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Abstract This appendix provides supporting materials for “Estimating Corporate Investment
Efficiency with Bias Correction: A Semiparametric Panel Model Approach.” Appendix 1 presents
the multi-step estimator for a general form of SEM-SP in Appendix 1.1, discusses asymptotic
properties of the estimator in Appendix 1.2, and illustrates the finite-sample performance of the
estimator through simulation studies in Appendix 1.3. A robust version of SEM-SP is proposed in
Appendix 1.4. Appendix 2 presents the implementation procedures of three test statistics for cor-
rect specifications on efficiency functions and composite error of SEM-SP. Appendix 2.1 provides a
test statistic for the null where a parametric efficiency function is correctly specified; Appendix 2.2
provides a test statistic for the null where only under-investment exists due to financial constraints;
and Appendix 2.3 provides a test statistic for the null where the three-regime composite error under
SEM-SP is correctly specified. The numeric properties of all the three tests are illustrated through
Monte-Carlo studies. Appendix 3 provides descriptive data summary in application section. Ap-
pendix 4 presents the complete empirical results comparing SEM-SP, SFM-SP, and SFM-NP, as
discussed in Section 4.3 of the paper. Appendix 5 provide instructions for the data and code used
in this study for replications.

Keywords: Investment efficiency, semiparametric panel model, three-regime composite error, ad-
ditive model, fixed effects.

1

mailto:taining.wang@cueb.edu.cn
mailto:zhaowang@cueb.edu.cn
mailto:feng.yao@mail.wvu.edu
mailto:kkar@binghamton.edu


Appendix 1: Construction and Properties of SEM-SP Estimator

In this section, we consider a general form of SEM-SP. We detail the estimation procedure in Ap-

pendix 1.1, assumptions for asymptotic properties in Appendix 1.2, and finite sample performance

in Appendix 1.3.

Appendix 1.1: Estimation procedure of SEM-SP

Our SEM-SP can be expressed in a general fashion as

Iit = m0 + αi + ηt +
d∑
j=1

mj(Xj,it) + ϵit, i = 1, ..., n, t = 1, ..., T, (A.1)

where the investment Iit of firm i at time t is influenced by a global constant m0, firm fixed effect

αi, time fixed effect ηt, and a total of d efficiency variables Xj,it with its individual unknown

efficiency function mj(·), for j = 1, . . . , d (i.e., in our application, X1,it = PQit, X2,it = CSit, and

X3,it = PSit, so d = 3). To identify mj(·), we impose the condition mj(Xj,it = 0) = 0 (Li, 2000),

and to identify m0, we require
∑n

i=1 αi =
∑T

t=1 ηt = 0 (Baltagi, 2013). The composite error ϵit

captures investment inefficiency under imperfect capital markets due to different financial frictions.

We specify ϵit with the following structure

ϵit = vit − uit1(uit > 0, eit = 0) + eit1(uit = 0, eit > 0), (A.2)

where vit is the conventional unobserved randomness that captures deviation from efficient in-

vestment under perfect market; uit ≥ 0 represents the degree of under-investment due to financial

constraints (i.e., the extent to which firm’s investment falls below efficient level); and eit ≥ 0 reflects

the degree of over-investment due to agency problem (i.e., the extent to which firm’s investment

rises above efficient level) 1 Notably, the composite error in (A.2) contains three regimes, from

which firms may under-invest with probability pu(W
u
it ; γ

u
0 ) (ϵit = vit − uit); over-invest with proba-

bility pe(W
e
it; γ

e
0) (ϵit = vit+eit); and efficiently invest with probability 1−pu(W u

it ; γ
u
0 )−pe(W e

it; γ
e
0),

where variablesW u
it ∈ ℜqu andW e

it ∈ ℜqe are determinants of under-investment and over-investment

(multi-logit) probability function pu(·) and pe(·), respectively, as defined in Section 2.2. Thus, our

specification in (A.2) rules out the case where firms under-invest and over-invest concurrently by

imposing the condition that uit > 0 and eit > 0 appear simultaneously with probability zero.

1We emphasize that a firm’s efficient investment is defined as Iit under perfect market, which is determined only
by Xj plus unobserved randomness (αi, ηt, vit).
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Given our assumptions in Section 2, let Wit = (W u⊤
it ,W e⊤

it )⊤ and recall that

E(ϵit|αi, ηt, Xit,Wit) = − [µu0pu(W
u
it ; γ

u
0 )− µe0pe(W

e
it; γ

e
0)] ≡ −π(Wit;µ0, γ0) ̸= 0, (A.3)

where µ0 = (µu0 , µ
e
0) are positive constants and γ0 = (γu⊤0 , γe⊤0 )⊤ are unknown coefficients in

inefficiency probabilities. With ω0 = (µ0, γ
⊤
0 ) ∈ ℜqu+qe+2 and ϵ̃it = ϵit + π(Wit;ω0), we have

E(ϵ̃it|αi, ηt, Git) = 0 by construction. For this reason, (A.1) can be transformed into a proper

regression form as

Iit = m0 + αi + ηt +
d∑
j=1

mj(Xj,it)− π(Wit;ω0) + ϵ̃it. (A.4)

Define ηt = D⊤
t η, where Dt is a (T × 1) zero vector except for the tth position being one, and

η ≡ η0 = [η0,1, ..., η0,T ]
⊤. Since η0,1 = −

∑T
s=2 η0,s by identification condition, we replace η0 with

η0,−1 = [η0,2, ..., η0,T ]
⊤ which removes the first element η0,1, and replace Dt with Dt,−1 defined

similarly. Then, we eliminate firm fixed effect αi through first-differencing as

∆Iit = ∆D⊤
t,−1η0,−1 +

d∑
j=1

∆mj(Xj,it)−∆π(Wit;ω0) + ∆ϵ̃it, (A.5)

where ∆ζit = ζit − ζit−1 for any random variable/function ζit.

We follow Wang et al. (2024) to implement a two-step estimator for our interested parameters

ω0, efficiency functions {mj(·)}, and derivative functions {m(1)
j }3j=1. In the first step, we estimate

ω0 by a profile nonlinear least square estimator (PNLS) ω̂, which involves series approximation on

time fixed effects ηt and unknown functions mj(·). Specifically, let Xj = [aj , bj ] ⊂ ℜ be a compact

support of Xj for some finite constants aj and bj . Without loss of generosity, we consider Xj = X
for all j with aj = a = −1 and bj = b = 1. For any point xj ∈ X , we define the basis function

ϕκ(xj) = [ϕ1(xj), . . . , ϕκ(xj)]
⊤ and series coefficients θj ∈ ℜκ. Then, we approximate each effi-

ciency function through ∆mj(Xj,it) = mj(Xj,it) − mj(Xj,it−1) ≈ (ϕκ(Xj,it) − ϕκ(Xj,it−1))
⊤θj ≡

∆ϕκ(Xj,it)
⊤θj . Let Xit = [X1,it, . . . , Xd,it]

⊤ and X̃it = [D⊤
t,−1, X

⊤
it ]

⊤ ∈ ℜT−1+d. Also, define

∆Φ(X̃it) = [∆D⊤
t,−1,∆ϕ

κ(X1,it)
⊤, . . . ,∆ϕκ(Xd,it)

⊤]⊤ be a S(κ)× 1 vector, with S(κ) = T − 1+ dκ.

Then, we approximate all efficiency functions, plus time effects, through ∆ηt +
∑d

j=1∆mj(Xj) ≈
∆Φ(X̃it)

⊤θ, where θ = (η⊤0,−1, θ
⊤
1 , . . . , θ

⊤
d )

⊤. Notably, our basis vector ∆Φ(X̃it) shares a similar

structure considered by Horowitz and Mammen (2004), who employ series estimator for one inter-

cept in regression model. In our case, we employ the series estimator for T −1 intercepts to control

for unobserved heterogeneities in time dimension, with T being fixed.

LetN = n(T−1), we defineN×1 vectors ∆I = {∆Iit}n,Ti=1,t=2 and ∆π(ω) = {∆π(Wit;ω)}n,Ti=1,t=2.

Also, we define a N ×S(κ) basis matrix ∆Φ = {∆Φ(X̃it)
⊤}n,Ti=1,t=2. Minimizing the sum of squared
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residuals, we estimate θ and ω0 with

(θ̂, ω̂) = argmin
{θ,ω}

[∆I −∆Φθ +∆π(ω)]⊤[∆I −∆Φθ +∆π(ω)],

where parameters θ and ω are additively separable. Therefore, for given ω, we obtain

θ̂(ω) = [∆Φ⊤∆Φ]−1∆Φ⊤(∆I +∆π(ω)). (A.6)

Denote M∆Φ = IN −P∆Φ = IN −∆Φ(∆Φ⊤∆Φ)−1∆Φ⊤ for IN being an N ×N identity matrix, we

estimate ω with PNLS as

ω̂ = argmin
{ω∈Ω}

[∆I +∆π(ω)]⊤M∆Φ[∆I +∆π(ω)], (A.7)

where Ω ⊂ ℜqu+qe+2 is a compact support of ω. From (A.6) and (A.7), we obtain profile series-

based estimators θ̂ ≡ θ̂(ω̂), providing estimates for time fixed effects η̂t and estimates for functions

m̂j(xj) = ϕκ(xj)
⊤θ̂j for j = 1, . . . , d.

In the second step, we propose a one-step backfitting for mj(·) and m(1)
j (·) using kernel estima-

tion to improve estimation efficiency and facilitate the inference. Based on (A.5), we observe the

following regression model for function mj(·) as

Iit,−j = mj(Xj,it) + ϵ̃it,

where Iit,−j = ∆Iit+mj(Xj,it−1)−
∑d

l=1,l ̸=j ∆ml(Xl,it)+∆π(Wit;ω) is treated as a new dependent

variable which collects all the differenced π(Wit;ω0) and efficiency functions except for mj(X
j
it).

Using our estimates from the first step, we construct a feasible version of Iit,−j as

Îit,−j = ∆Iit + m̂j(Xj,it−1)−
d∑

l=1,l ̸=j
∆m̂l(Xl,it) + ∆π(Wit; ω̂).

For any point xj from its compact support, we obtain the backfitting estimator for mj(xj) with

a local linear regression of Îit,−j on Xj,it as m̃j(xj) ≡ ã, and for m
(1)
j (xj) as m̃

(1)
j (xj) ≡ b̃, by

minimizing the following kernel weighted sum of squared residuals

(ã, b̃) = argmin
{a,b}

n∑
i=1

T∑
t=2

[
Îit,−j − a− (Xj,it − xj)b

]2
K

(
Xj,it − xj

hj

)
, (A.8)

where K(·) is a univariate kernel function and hj is the bandwidth for Xj . Finally, we can estimate

the global intercept m0 in (A.1) using using parameter estimates in (A.7) and backfitting estimates
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in (A.8) by

m̃0 =
1

nT

n∑
i=1

T∑
t=1

Iit − d∑
j=1

m̃j(Xj,it) + π(Wit; ω̂)

 . (A.9)

Appendix 1.2: Assumptions for asymptomatic properties of SEM-SP estimator

Our SEM-SP is constructed as a modified version of a recently developed semiparametric addi-

tive stochastic frontier model (SFM-AM) by Wang et al. (2024). Thus, the SEM-SP is different

from the SFM-AM in three aspects. First, our SEM-SP is applied to capital investment model,

assuming that two distinct financial frictions may arise to cause inefficient investment. Correspond-

ingly, we specify a three-regime composite error ϵit in (A.2), covering the case of under-investment

(ϵit = vit−uit), over-investment (ϵit = vit+ eit), or efficient investment (ϵit = vit) with correspond-

ing probabilities. In contrast, the SFM-AM is applied to production model, assuming that firms

produce inefficiently with certainty (i.e., output produced lower than its maximum given the same

amount of inputs). As a result, SFM-AM specifies a one-regime composite error ϵit = vit − uit,

which occurs with probability one so that all firms are deemed inefficient. Second, our SEM-SP

focuses on revealing individual effects of efficiency variables through functions {mj(·)}dj=1, but not

on the interactive effects among the efficiency variables (i.e., Tobin’s q and sales ratio) as they are

not clearly documented from existing literature. SFM-AM specifies both individual and interactive

functions of production inputs to accommodate complex structure of the underlying production

function beyond a simple linear fashion. Thus, the frontier functions under SFM-AM reduces to

the efficiency functions under SEM-SP when interactive effects among {Xj}dj=1 are not considered.

Finally, our SEM-SP controls for latent heterogeneities in both firm and time dimension through

additive fixed effects (αi, ηt), whereas SFM-AM incorporates only firm fixed effects (αi).

Below, we list out assumptions for the asymptotic characterizion of our proposed estimator

based on assumptions A-C in Wang et al. (2024).

A1* (1) {(Yit, Xit,W
u
it ,W

e
it) : i = 1, . . . , n, t = 1, . . . , T} is i.i.d. (identically and independently

distributed) across i = 1, . . . , n, and T is finite. The support of vector Xit is a compact subset

of ℜd, assumed to be [−1, 1]d. (2) The fixed effects are αi and ηt with E(αi) = E(ηt) = 0. (3)

vit is i.i.d. across both i and t independent of other variables, with mean 0 and finite variance

σ2v . (4) uit and eit are i.i.d. across i = 1, . . . , n, satisfying E(uit|αi, ηt, Xit,Wit) = µu0 > 0,

E(eit|αi, ηt, Xit,Wit) = µe0 > 0, E(u2it|αi, ηt, Xit,Wit) < C, and E(e2it|αi, ηt, Xit,Wit) < C

for all i and t, with Wit = (W u
it ,W

e
it) ∈ ℜqu+qe . (5) For ϵ̃it = ϵit − π(Wit;ω0), E(ϵ̃it −

ϵ̃it−1|Xit, Xit−1,Wit,Wit−1) = 0.

A2* (1) For Ω, a compact subset of ℜq with q = qu+qe+2, ω0 is contained in the interior of Ω. (2)

For ω ∈ Ω and X̃it = (D⊤
t,−1, Xit), define Q(ω) = 1

T

∑T
t=1E[∆π(Wit;ω) − h(X̃it, X̃it−1;ω) −

(∆π(Wit;ω0) − h(X̃it, X̃it−1;ω0))]
2, where h(X̃it, X̃it−1;ω) = EG(E(∆π(Wit;ω)|X̃it, X̃it−1)).
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Q(ω) = 0 only when ω = ω0. (3) π(Wit;ω) is continuous in ω ∈ Ω uniformly such that

|π(Wit;ω) − π(Wit;ω
′)| ≤ Bπ(Wit)||ω − ω′||, where Bπ(·) is continuous and EB2

π(Wit) <

∞, ∀ ω, ω′ ∈ Ω. (4) (∆π(Wit;ω) − ∆π(Wit;ω0))
2, ∆ϵit∆π(Wit;ω), ∆1πit(ω), (∆1πit(ω))

2,

and ∆1πit(ω)∆1πit(ω0) satisfy the Cramer’s condition, where ∆1πit(ω) = ∆π(Wit;ω) −
h(X̃it, X̃it−1;ω). (5) E supω∈Ω |π(Wit;ω)|2 <∞.

A3* (1) Define S(κ) = T − 1 + dκ, ∃ some δ > 0 and a S(κ)× 1 real vector Bh such that

supω∈Ω supXit∈[−1,1]d,Xit−1∈[−1,1]d |h(X̃it, X̃it−1;ω) − ∆Φ(X̃it)
⊤Bh| = O(dκ−δ). (2) ∃ some

δ > 0 and a κ×1 real vector Bmj such that sup
xj∈[−1,1]

|mj(xj)−ϕκ(xj)⊤Bmj | = O(κ−δ). Also, ∃

a S(κ)×1 real vectorBm such that supXit∈[−1,1]d |ηt+
∑d

j=1mj(Xj,it)−Φ(X̃it)
⊤Bm| = O(dκ−δ)

for all t = 1, ..., T . (3) κ→ ∞, and
√
n(dκ−δ) → 0 as n→ ∞. (4) For some nonstochastic se-

quences ξκ and ξS(κ) = 2dξκ, sup
xj∈[−1,1]

||ϕκ(xj)|| ≤ ξκ and supXit∈[−1,1]d,Xit−1∈[−1,1]d ||∆Φ(X̃it)|| ≤

ξS(κ). Furthermore, as n→ ∞, ξ2S(κ)S(κ)/n→ 0, and ξ2S(κ)(ln(n))
1/2/n→ 0. (5) The smallest

eigenvalue of E(∆Φ(X̃it)∆Φ(X̃it)
⊤) is bounded away from zero for all t.

B1* For ∂jπit(ω) =
∂π(Wit;ω)

∂ωj
, ∂jlπit(ω) =

∂2π(Wit;ω)
∂ωj∂ωl

, |∂jπit(ω) − ∂jπit(ω
′)| ≤ B∂jπ(Wit)||ω − ω′||,

and |∂jlπit(ω) − ∂jlπit(ω
′)| ≤ B∂jlπ(Wit)||ω − ω′||, for all ω, ω′ ∈ Ω, t = 1, . . . , T , j or

l = 1, . . . ,q with EB2
∂jπ

(Wit) <∞ and EB2
∂jlπ

(Wit) <∞. The condition holds almost surely

with respect to the probability measure associated with Wit.

B2* For ∂jh(Xit, Xit−1;ω) = EG(E(∂j∆πit(ω)|Xit, Xit−1)), ∂jlh(Xit, Xit−1;ω) =

EG(E(∂jl∆πit(ω)|Xit, Xit−1)), where ∂j∆πit(ω) = ∂∆π(Wit;ω)
∂ωj

, ∂jl∆πit(ω) = ∂2∆π(Wit;ω)
∂ωj∂ωl

, ∃
some δ, δ1 > 0, B∂jh and B∂jlh, both S(κ)× 1 real vectors, such that

supω∈Ω supXit∈[−1,1]d,Xit−1∈[−1,1]d |∂jh(Xit, Xit−1;ω)−∆Φ(Xit)
′B∂jh| = O(dκ−δ) and

supω∈Ω supXit∈[−1,1]d,Xit−1∈[−1,1]d |∂jlh(Xit, Xit−1;ω)−∆Φ(Xit)
′B∂jlh| = O(dκ−δ).

B3* Define ∂j∆1πit(ω) = ∂j∆πit(ω)−∂jh(Xit, Xit−1;ω) and ∂jl∆1πit(ω) = ∂jl∆πit(ω)−∂jlh(Xit, Xit−1;ω).

For all t = 2, . . . , T , j, l ∈ {1, . . . , p}, E(∂j∆1πit(ω)∂l∆1πit(ω)), E(∂jl∆1πit(ω))
2 and E(∆1πit(ω)−

∆1πit(ω0))∂jl∆πit(ω) are finite ∀ ω ∈ Ω and continuous at ω0 ∈ Ω.

B4* ΣT (ω0) is a q× q nonstochastic invertible matrix with its (j, l)th element as

ΣT,jl(ω0) =
2

T − 1

T∑
t=2

E(∂j∆1πit(ω0)∂l∆1πit(ω0)).

B5* E supω∈Ω |∂jπit(ω)|2 < C, E supω∈Ω |∂jlπit(ω)|2 < C, E[supω∈Ω |∂jθ(Xit, Xit−1;ω)|]2 < C,

and

E[supω∈Ω |∂jlθ(Xit, Xit−1;ω)|]2 < C, where ∂jθ(Xit, Xit−1;ω) = EG(E(∂jπit(ω)|Xit, Xit−1))
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and

∂jlθ(Xit, Xit−1;ω) = EG(E(∂jlπit(ω)|Xit, Xit−1)).

B6* For all j, l ∈ {1, . . . ,q}, t, t′ ∈ {2, . . . , T}, ∂jπit(ω)∂lπit′(ω), ∂j∆1πit(ω), ∂j∆1πit(ω)∂j∆1πit′(ω),

∂jθ(Xit, Xit−1;ω)∂lθ(Xit, Xit−1;ω), ∂jh(Xit, Xit−1;ω)∂lh(Xit, Xit−1;ω), (∂jlπit(ω))
2,

(∂jlθ(Xit, Xit−1;ω))
2, (∂jlh(Xit, Xit−1;ω))

2, ∂jl∆1πit(ω), ∂jl∆1πit(ω)∂jl∆1πit′(ω), ∆ϵit∂jl∆πit(ω),

∆1πit(ω)∂jlπit(ω) and ∆1πit(ω0)∂jlπit(ω) satisfy the Cramér’s condition.

C1* The kernel function K(ψ) : ℜ → ℜ is symmetric and satisfies (1)
∣∣K(ψ)ψj

∣∣ ≤ C for all

ψ ∈ ℜ with j = 0, 1, . . . , 3; (2)
∫
|ψjK(ψ)|dψ ≤ C for j = 0, 1, . . . , 3; (3)

∫
K(ψ)dψ = 1,∫

ψK(ψ)dψ = 0, and µk,s =
∫
ψsK(ψ)dψ; (4) K(ψ) is continuously differentiable on ℜ with

|ψj d
dψK(ψ)| ≤ C for all ψ ∈ ℜ and j = 0, 1, . . . , 3.

C2* (1) ∀ j, l ∈ {1, . . . , d}, j < l, mj(·) ∈ C2. (2) For some ρ > 0, E|vit|2+ρ < C, E|uit|2+ρ < C,

and E(|∆ϵit|2+ρ|Xj
it, X

l
it) < C. (3) E(∆ϵ2it|X

j
it = xj) = σ2∆ϵit(x

j) is continuous at xj .

C3* (1) The conditional density of Xj,it, Xl,it given ũit, ũit−1 is fXj,t,Xl,t|ũt,ũt−1
(Xj,it, Xl,it) < C.

(2) For G, a compact subset of [−1, 1], infXj,it∈G,Xl,it∈G fXj,t,Xl,t
(Xj,it, Xl,it) > 0, where

fXj,t,Xl,t
(Xj,it, Xl,it) is the joint density of Xj,it, Xl,it, τ = t or t− 1, ∀ 1 ≤ j < l ≤ d. (3) The

joint density of Xit by is fXt(Xit) ∈ C2. (5) The joint density of Wit is fWt(Wit) ∈ C2. The

joint density of Xj
it and Wit−1 is fXj,t,Wt−1(Xj,it,Wit−1) ∈ C2.

C4 (1) ϕk(x
j) ∈ C2. (2) h = O(n−1/5), ξ2S(κ) = O(S(κ)), κ = o(n3/10).

Assumption A1* revises original A1 by allowing both fixed effects αi and ηt to be arbitrary

correlated with covariates for all t. The zero conditional mean of αi and ηt ensures the identification

of global constant m0 in (A.1). The incidental parameter problem does not arise in our SEM-SP

because A1* requires fixed T for time effects to be estimated consistently given that n→ ∞. The

constant means of uit and eit follow conventional specifications in SFM with zero inefficiency (Yao

et al., 2018; Wang et al., 2020). Thus, we allow inefficiency variables W u
it and W e

it to influence

investment inefficiencies in a more stochastic fashion through altering probability functions pu(·)
and pe(·), respectively. Assumption A2* revises the original A2 by imposing standard conditions of

uniform continuity and boundedness on the inefficiency function π(W ;ω0). The additive function

h(.;ω) is obtained by projecting ∆π(·) onto an additive space spanned by X̃it and X̃it−1 (both

including continuous variables X and T − 1 dummies). This is similar to the generalized additive

regression model by Horowitz and Mammen (2004), where only one constant is considered (i.e.,

ηt = η) and the link function is identify. Assumption A3* revises the original A3 mainly by

imposing new conditions A3*(1)-A3*(2), which ensure that the series approximation error of h(·)
and mj(·) vanishes sufficiently fast in the presence of T − 1 constants for time fixed effects. Similar

conditions can be found from Horowitz and Mammen (2004) where one constant is estimated
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besides additive functions. As in Wang et al. (2024), the rate at which the approximation errors

decay toward zero is governed by A3*(3)-A3*(4) in order to achieve the 1/
√
n convergence rate

of ω̂ in the first step. The rest assumptions B* and C* are revised to accommodate the structure

of our SEM-SP in which efficient investment function (EIF) contains only univariate functions

{mj(xj)}dj=1.

We first characterize the asymptotics of parameter estimators ω̂. For ∂j∆1πit(ω) = ∂j∆πit(ω)−
∂jh(X̃it, X̃it−1;ω), we denote ΩT (ω0) as a q× q matrix whose (j, l)th element is given by

ΩT,jl(ω0) =
4

(T − 1)2

T∑
t=2

T∑
τ=2

E(∆ϵ̃it∆ϵ̃iτ∂j∆1πit(ω0)∂l∆1πiτ (ω0)).

Also, define the (j, l)th element of ΣT (ω0) defined in B4* as

ΣT,jl(ω0) =
2

T − 1

T∑
t=2

E(∂j∆1πit(ω0)∂l∆1πit(ω0)).

Theorem 1. As n→ ∞ and T is fixed,

a) With Assumption A*, ω̂
p→ ω0.

b) With Assumptions A* and B*,
√
n(ω̂ − ω0)

d→ N(0,ΣT (ω0)
−1ΩT (ω0)ΣT (ω0)

−1).

The consistent estimator for ΣT (ω0) and ΩT (ω0) can be obtained following similar arguments in

Appendix 4 of Wang et al. (2024).

We next present asymptotics of function and derivative estimators {m̃j(xj), m̃
(1)
j (xj)}dj=1. De-

fine the conditional variance function of m̃j(xj) as

σ2mj
(xj) =

[
1

T − 1

T∑
t=2

fXj,t(xj)

]−2
1

(T − 1)2

T∑
t=2

σ2∆ϵ̃it(xj)fXj,t(xj)

∫
K2(ψ)dψ.

Similar, the variance function of m̃
(1)
j (xj) is defined as

σ2(1)mj
(xj) =

[
µk,2
T − 1

T∑
t=2

fXj,t(xj)

]−2
1

(T − 1)2

T∑
t=2

σ2∆ϵ̃it(xj)fXj,t(xj)

∫
ψ2K2(ψ)dψ.

Theorem 2. With Assumption A*-C*, as n→ ∞ with T fixed,

(a)
√
nh(m̃j(xj)−mj(xj)− h2

2 Bj(xj) + op(h
2))

d→ N(0, σ2mj
(xj)).

(b)
√
nh(m̃j(xj) − mj(xj) − h2

2 + op(h
2)) and

√
nh(m̃l(xl) − ml(xl) − h2

2 Bj(xj) + op(h
2)) are

asymptotically independently normally distributed for l ̸= j = 1, ..., d.
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(c)
√
nh3(m̃

(1)
j (xj)−m

(1)
j (xj)− h2

2 B
(1)
j (xj) + op(h

2))
d→ N(0, σ

2(1)
mj (xj)).

(d)
√
nh3(m̃

(1)
j (xj)−m(1)

j (xj)− h2

2 B
(1)
j (xj)+op(h

2)) and
√
nh3(m̃

(1)
l (xl)−m

(1)
l (xl)− h2

2 B
(1)
l (xl)+

op(h
2)) are asymptotically independently normally distributed for l ̸= j = 1, ..., d.

Here, the leading bias term Bj(xj) in (a)-(b) is given by Bj(xj) = m
(2)
j (xj)µk,2 for m̃j(xj), and

B
(1)
j (xj) in (c)-(d) takes the form

B
(1)
j (xj) =

[
µk,2
T − 1

T∑
t=2

fXj,t(xj)

]−1
µk,4
T − 1

T∑
t=2

m
(2)
j (xj)f

(1)
Xj,t

(xj),

where f
(1)
Xj,t

(xj) = ∂jf
(1)
Xj,t

(xj)/∂jxj and m
(2)
j (xj) = ∂2mj(xj)/∂

2xj . The proof of Theorems 1-2

follows closely to the arguments in the appendix of Wang et al. (2024) and thus are omitted here

for brevity.

Appendix 1.3: Numerical properties of SEM-SP estimator

This section investigates the finite-sample performance of our propose parameter estimator ω̂ in

(A.7) and functions and derivatives estimator {m̃j(xj), m̃
(1)
j (xj)}dj=1 in (A.8). To mimic the struc-

ture of our empirical dataset, we simulate our data below by setting T = 15 and, for reducing

computational burden, we choose n = (100, 200, 400). As in our application, we set d = 3 and

highlight that our estimator’s performance is not affected by the dimension d due to the combined

use of series-kernel estimation (Wang et al., 2024). Accordingly, we generate data according to the

following data generating process (DGP):

Iit = m0 + αi + ηt +m1(X1,it) +m2(X2,it) +m3(X3,it) + ϵit, (A.10)

where ϵit = vit − uit with probability pu(W
u
it ; γ

u
0 ), ϵit = vit + eit with probability pe(W

e
it; γ

e
0), and

ϵit = vit with probability 1−pu(W u
it ; γ

u
0 )−pe(W e

it; γ
e
0). As above, we mimic our empirical dataset by

consideringW u = [W u
1 ,W

u
2 ]

⊤ (i.e., qu = 2), andW e = [W e
1 ,W

e
2 ,W

e
3 ,W

e
4 ,W

e
5 ,W

e
6 ]

⊤ withW e
1 =W u

1

andW e
2 =W u

2 (i.e., qe = 6). We specify two DGPs with different functional formsmj(·) and param-

eters ω0. In DGP1, we set m0 = 3, m1(v) = v + 1
2v

2, m2(v) = v2 − 1
2v

3, m3(v) = 1.5v4, (µu0 , µ
e
0) =

(1, 2), [γu0,1, γ
u
0,2] = [0.5, 1]⊤, and [γe0,1, γ

e
0,2, γ

e
0,3, γ

e
0,4, γ

e
0,5, γ

e
0,6] = [1.5, 2, 0.5,−0.5, 2.5,−1]⊤. In

DGP2, we have m0 = −2, m1(v) = exp(v) − 1, m2(v) = −v2, m3(v) = sin(v), (µu0 , µ
e
0) = (3, 0.5),

[γu0,1, γ
u
0,2] = [−1, 0.5]⊤, and [γe0,1, γ

e
0,2, γ

e
0,3, γ

e
0,4, γ

e
0,5, γ

e
0,6] = [2.5,−2, 0.5,−0.5, 1,−1]⊤. Efficiency

functions exhibit quadratic structures under DGP1, and exhibit exponential, quadratic, or periodic

structures under DGP2. The derivative functions m
(1)
j (·) under each DGP are apparent with both

linear and nonlinear forms, and thus omitted for brevity. The parameters γ0 = (γu⊤0 , γe⊤0 )⊤ are

carefully chosen so that the mean of (pu(·), pe(·)) are (0.7, 0.08) in DGP1 and (0.26, 0.40) in DGP2.
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Table A1.1: SEM-SP Estimation Results for Inefficiency Parameters

T = 15 DGP1 DGP2

n = 100 200 400 n = 100 200 400

µ̂u RMSE 0.0468 0.0357 0.0215 0.0336 0.0216 0.0151
BIAS 0.0374 0.0280 0.0180 0.0258 0.0171 0.0119
SD 0.0278 0.0212 0.0130 0.0215 0.0132 0.0093

µ̂e RMSE 0.0509 0.0425 0.0270 0.0410 0.0264 0.0183
BIAS 0.0406 0.0332 0.0224 0.0324 0.0210 0.0145
SD 0.0319 0.0278 0.0160 0.0252 0.0160 0.0111

γ̂u
1 RMSE 0.0989 0.0752 0.0552 0.0735 0.0510 0.0334

BIAS 0.0749 0.0582 0.0435 0.0574 0.0410 0.0266
SD 0.0614 0.0462 0.0333 0.0459 0.0305 0.0202

γ̂u
2 RMSE 0.0598 0.0410 0.0269 0.0418 0.0282 0.0188

BIAS 0.0454 0.0322 0.0215 0.0332 0.0226 0.0149
SD 0.0373 0.0235 0.0157 0.0255 0.0169 0.0115

γ̂e
1 RMSE 0.0784 0.0572 0.0379 0.0650 0.0431 0.0294

BIAS 0.0583 0.0481 0.0308 0.0516 0.0337 0.0236
SD 0.0491 0.0336 0.0215 0.0396 0.0268 0.0176

γ̂e
2 RMSE 0.0658 0.0474 0.0306 0.0509 0.0341 0.0232

BIAS 0.0516 0.0374 0.0249 0.0400 0.0270 0.0187
SD 0.0395 0.0267 0.0181 0.0315 0.0209 0.0138

γ̂e
3 RMSE 0.0535 0.0345 0.0246 0.0367 0.0238 0.0165

BIAS 0.0413 0.0273 0.0195 0.0291 0.0190 0.0132
SD 0.0323 0.0207 0.0149 0.0224 0.0144 0.0099

γ̂e
4 RMSE 0.0399 0.0265 0.0193 0.0350 0.0234 0.0153

BIAS 0.0319 0.0216 0.0157 0.0278 0.0186 0.0122
SD 0.0232 0.0166 0.0118 0.0212 0.0142 0.0092

γ̂e
5 RMSE 0.0706 0.0450 0.0315 0.0528 0.0341 0.0238

BIAS 0.0544 0.0377 0.0254 0.0423 0.0274 0.0189
SD 0.0442 0.0242 0.0188 0.0317 0.0203 0.0146

γ̂e
6 RMSE 0.0673 0.0402 0.0304 0.0482 0.0317 0.0223

BIAS 0.0538 0.0323 0.0250 0.0385 0.0256 0.0175
SD 0.0439 0.0233 0.0185 0.0291 0.0188 0.0138

Thus, a relatively higher likelihood to under-invest (over-invest) is reflected in DGP1 (DGP2) as

in non-SOEs (SOEs and whole sample) considered in our study.

To allow correlations among variables, we first generate auxiliary variables {X0
j,it}3j=1, {W

u,0
j,it }2j=1,

and {W e,0
j,it}6j=3 from a multivariate normal distribution N (µ0,Σ0), where µ0 is a 9× 1 vector of 0,

and Σ0 is the covariance matrix with its (j, l)th element as ρ|j−l| for j, l = 1, ..., 9. We set ρ = 0.5

to allow regressors to be reasonably correlated. We next introduce dependence across time by gen-

erating Xj,it = X0
j,it+ ζxj,it (with j = 1, 2, 3), W u

s,it =W u,0
s,it + ζus,it (with s = 1, 2), W e

l,it =W e,0
l,it + ζel,it

(with l = 3, 4, 5, 6), where ζxj,it = 0.25ζxj,it−1 + ξit, ζ
u
s,it = 0.5ζus,it−1 + ξit, and ζ

e
s,it = 0.75ζul,it−1 + ξit

follow an AR(1) process with ξit ∼ N (0, 0.252). Here, we generate Xj,it with values falling into

[−2, 2] to be in line with our assumption of the compact support for Xj,it.
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Table A1.2: SEM-SP Estimation Results for Efficiency Functions

DGP1 T = 15 n = 100 200 400
SEM-SP SEM-SP-Oracle SEM-SP SEM-SP-Oracle SEM-SP SEM-SP-Oracle

m̃1 RAMSE 0.0956 0.0927 0.0684 0.0674 0.0513 0.0507
ABIAS 0.0660 0.0644 0.0489 0.0482 0.0374 0.0369
ASD 0.0787 0.0760 0.0588 0.0578 0.0449 0.0443

m̃2 RAMSE 0.1775 0.1747 0.1378 0.1373 0.1068 0.1061
ABIAS 0.1431 0.1416 0.1117 0.1112 0.0872 0.0869
ASD 0.0851 0.0808 0.0614 0.0611 0.0455 0.0446

m̃3 RAMSE 0.3598 0.3587 0.2321 0.2314 0.1819 0.1815
ABIAS 0.2963 0.2950 0.1782 0.1773 0.1351 0.1346
ASD 0.0842 0.0839 0.0515 0.0512 0.0302 0.0301

m̃
(1)
1 RAMSE 0.1534 0.1517 0.1281 0.1267 0.1051 0.1024

ABIAS 0.1109 0.1101 0.0918 0.0916 0.0724 0.0712
ASD 0.1129 0.1127 0.0916 0.0912 0.0767 0.0742

m̃
(1)
2 RAMSE 0.4017 0.4007 0.3402 0.3393 0.2905 0.2902

ABIAS 0.2534 0.2521 0.2089 0.2086 0.1713 0.1705
ASD 0.1018 0.1013 0.0759 0.0758 0.0624 0.0616

m̃
(1)
3 RAMSE 0.4494 0.4490 0.3993 0.3990 0.3431 0.3430

ABIAS 0.2718 0.2711 0.2364 0.2363 0.1972 0.1972
ASD 0.1767 0.1751 0.1181 0.1176 0.0866 0.0863

DGP2 T = 15 n = 100 200 400
SEM-SP SEM-SP-Oracle SEM-SP SEM-SP-Oracle SEM-SP SEM-SP-Oracle

m̃1 RAMSE 0.1144 0.1135 0.0855 0.0851 0.0679 0.0677
ABIAS 0.0821 0.0817 0.0645 0.0641 0.0502 0.0500
ASD 0.0758 0.0730 0.0570 0.0566 0.0454 0.0452

m̃2 RAMSE 0.1052 0.1029 0.0797 0.0793 0.0622 0.0617
ABIAS 0.0711 0.0698 0.0539 0.0538 0.0433 0.0428
ASD 0.0739 0.0722 0.0578 0.0575 0.0463 0.0461

m̃3 RAMSE 0.0832 0.0801 0.0677 0.0671 0.0534 0.0524
ABIAS 0.0617 0.0597 0.0499 0.0495 0.0396 0.0389
ASD 0.0705 0.0675 0.0560 0.0555 0.0465 0.0459

m̃
(1)
1 RAMSE 0.2178 0.2143 0.1820 0.1811 0.1507 0.1499

ABIAS 0.1209 0.1191 0.0989 0.0983 0.0791 0.0788
ASD 0.0713 0.0702 0.0574 0.0566 0.0471 0.0469

m̃
(1)
2 RAMSE 0.2866 0.2829 0.2372 0.2372 0.1970 0.1966

ABIAS 0.2001 0.1972 0.1595 0.1591 0.1322 0.1319
ASD 0.1410 0.1375 0.1142 0.1130 0.0978 0.0977

m̃
(1)
3 RAMSE 0.1870 0.1865 0.1670 0.1650 0.1298 0.1286

ABIAS 0.1346 0.1336 0.1192 0.1191 0.0935 0.0926
ASD 0.1346 0.1330 0.1156 0.1145 0.0971 0.0965
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We construct the firm fixed effect αi =
1
T

∑T
t=1 c0(

∑d
j=1Xj,it +

∑2
s=1W

u
s,it +

∑6
l=3W

e
l,it) + ξαi ,

where ξαi ∼ N (0, 1) and c0 ̸= 0 reflects correlation between αi and covariates. Likewise, we generate

time fixed effect ηt =
1
n

∑n
i=1 c0(

∑d
j=1Xj,it+

∑2
s=1W

u
s,it+

∑6
l=3W

e
l,it)+ξ

η
t , where ξ

η
t ∼ N (0, 1) and

c0 ̸= 0 reflects correlation between ηt and covariates. We consider a fixed effect model by setting

c0 = 1, and empirically center (αi, ηt) to be consistent with our assumption that E(αi) = E(ηt) = 0.

Finally, we employ a cubic B-spline estimator in (A.7) with each knot evenly spaced on the support

of Xj , and a 2nd-order Gaussian kernel function in (A.8). We impose the identification condition

for mj(·) by empirically centering basis functions around zero.

Our two-step estimation necessitates choosing the number of basis functions κ in the series

estimator (A.7) and the bandwidth h in the kernel backfitting estimator (A.8). To ensure that the

series estimation in the first step do not affect the convergence rate of ω̂ asymptotically, we adjust

the order of κ through a constant ϱ to implement ω̂ by setting κ = [n
1
5
+ϱ], where [v] refers to the

integer part of a real number v. For the backfitting estimator, we adopt a rule-of-thumb (ROT)

bandwidth hj = Cσ̂jn
− 1

5 , with σ̂j the empirical standard deviation of {Xj,it}n,Ti=1,t=1. Thus, we need

to choose constants ϱ and C. Below, we first set ϱ = 0.1 and C = 1 as benchmarks in our simulation

study, and we choose (ϱ, C) from different pairs to investigate their impact on simulation results.

We perform 1000 repetitions throughout the experiment. To evaluate the performance of esti-

mates ω̂, we report the root mean squared error (RMSE), the absolute bias (BIAS), and the standard

deviation (SD). To evaluate the performance of function and derivatives estimates (m̃j(·), m̃(1)
j (·)),

we report the root averaged mean squared error (RAMSE), the averaged BIAS (ABIAS), and

averaged standard deviation (ASD) across 50 grid points in [−2, 2].

Table A1.1 reports the performance of ω̂ for DGP1 on the left panel and DGP2 on the right

panel, with (ϱ, C) = (0.1, 1). Across both DGPs, the magnitude of each measure for ω̂ is fairly

small. The performance of two constant estimates (µ̂u, µ̂e) are relatively superior than most of other

parameters, except for γ̂e4. Moreover, we observe a clear improvement in the performance of each

parameter in ω̂ as n doubles, indicated by the reduction in RMSE, BIAS, and SD. This observation

holds across two different DGPs. Thus, the results above suggest consistency properties of our ω̂

in (A.7).

Table A1.2 summarizes the performance of kernel-backfitting estimates under DGP1 (upper

panel) and DGP2 (lower panel), from each the function estimates m̃j(·) are reported in the first

three rows and the derivative estimates m̃
(1)
j (·) in the last three rows. For comparison purpose,

in each DGP we compare the performance of our estimator (SEM-SP) with the oracle estimator

(SEM-SP-Oracle), which assumes that ω0 and all the other efficient functions (except the one being

estimated) were known. The results are qualitatively similar to our parameter estimators in Table

A1.1. Across both DGPs and as n gets large, both function and derivative estimators clearly

become superior in terms of decreasing RAMSE, ABIAS, and ASD, illustrating their consistency

properties. The performance of m̃
(1)
j (·) is uniformly worsen than m̃j(·), which is consistent with
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Figure A.1: SEM-SP Estimation from DGP1 for Efficiency Function (First row) and Derivatives
(Second row)
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Theorem 3 of Wang et al. (2024) on the slower convergence rate of derivative estimator. Given

each sample size of n, SEM-SP reveals a quantitatively similar estimates compared to SEM-SP-

Oracle, which is also expected due to the fast convergence speed of parametric parameter ω̂ given

in Theorem 1 of Wang et al. (2024).

To provide a vivid picture on the performance of our estimators, we plot estimates for three

functions (derivatives) correspondingly in panels (a.1)-(a.3) ((b.1)-(b.3)) of Figure A.1 under DGP1

and Figure A.2 under DGP2. In each panel, we plot the true function mj(·) or m(1)
j (·) (black solid

line), together with SEM-SP estimates m̃j(·) or m̃(1)
j (·) (red dash line), 95% asymptotic confidence

interval constructed based on Theorem 3 and Corollary 2 of Wang et al. (2024) (black dot line),

and the SEM-SP-Oracle estimates (blue dot line). The estimation is performed with the largest

sample size considered in our simulation study, i.e., (n, T ) = (400, 15). We observe that our function

estimator closely captures the nonlinearity of mj(·) across both DGPs. Similar observations are

made for our derivative estimator, which clearly reveals the linear or nonlinear functional form

of m
(1)
j (·) evaluated at most observations, except for xj around boundaries in those derivative

functions with a high degree of curvature. Overall, our SEM-SP demonstrates appealing numerical
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Figure A.2: SEM-SP Estimation from DGP2 for Efficiency Function (First row) and Derivatives
(Second row)

−2 −1 0 1 2

−
1

0
1

2
3

4
5

6

(a.1)

X1

E
s
ti
m

a
te

d
 f

u
n

c
ti
o

n
 o

f 
m

1
(x

1
)

SEM−SP

95% CI

SEM−SP−Oracle

True

−2 −1 0 1 2
−

3
−

2
−

1
0

(a.2)

X2

E
s
ti
m

a
te

d
 d

e
ri

va
ti
ve

s
 o

f 
m

2
(x

2
)

−2 −1 0 1 2

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

(a.3)

X3

E
s
ti
m

a
te

d
 d

e
ri

va
ti
ve

s
 o

f 
m

3
(x

3
)

−2 −1 0 1 2

0
1

2
3

4
5

6
7

(b.1)

X1

E
s
ti
m

a
te

d
 d

e
ri

va
ti
ve

s
 o

f 
m

1(1
) (x

1
)

SEM−SP

95% CI

SEM−SP−Oracle

True

−2 −1 0 1 2

−
4

−
2

0
2

4

(b.2)

X2

E
s
ti
m

a
te

d
 d

e
ri

va
ti
ve

s
 o

f 
m

2(1
) (x

2
)

−2 −1 0 1 2
−

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b.3)

X3

E
s
ti
m

a
te

d
 d

e
ri

va
ti
ve

s
 o

f 
m

3(1
) (x

3
)

performance in estimating unknown parameters, functions, and derivatives of our interests. We

expect that its application to our empirical study provides a reliable empirical findings given our

large number of firms.

Finally, we investigate the sensitivity of our simulation results to the choice of scaling parameters

(ϱ, C). Maintaining the same experimental setup, we explore additional values by selecting ϱ from

(0.05, 0.15) and C from (0.5, 1.5), resulting in four combinations as (0.05, 0.5), (0.05, 1.5), (0.15, 0.5),

and (0.15, 1.5). For each constant, the larger value is three times the smaller one, allowing for a

broad exploration of these constants. Here, a larger ϱ indicates higher degree of undersmoothing,

implying more basis functions in the series estimation. Conversely, a larger C corresponds to a

larger bandwidth and a higher degree of oversmoothing in the kernel backfitting estimation.

Table A1.3 summarizes the performance of selected parameter estimates (µ̂u, γ̂u1 , γ̂
e
1) and func-

tion estimates (m̃1, m̃
(1)
1 ) for DGP1 (top) and DGP2 (bottom). Results for different (ϱ, C) combi-

nations are reported under each sample size n. We find no clear pattern in how variations in ϱ or C

influence the numerical properties, as the differences in all statistical measures remain minimal and

there does not seem to be a clear pattern on the changes. For instance, increasing ϱ from 0.05 to
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0.15 while holding C = 0.5 and n = 100 raises the RMSE of µ̂u from 0.0495 to 0.0614 under DGP1

but lowers it from 0.0761 to 0.0693 under DGP2. More generally, RMSE for all parameter estimates

remain relatively stable across different choices of ϱ. Even with a larger sample size of n = 400, no

specific pattern appears regarding these scaling parameters and estimation performance. For the

function estimates, when C = 0.5 or C = 1.5, we observe that the RAMSE of m̃1 under DGP1

decreases with smaller ϱ, but this difference diminishes as n increases and is not observed under

DGP2. Overall, changes in RAMSE for both m̃1 and m̃
(1)
1 remain small, particularly for larger n.

Additionally, for a fixed ϱ, increasing C (i.e., increasing the bandwidth hj) reduces variance while

increasing bias in kernel estimates, which is expected from the well-known bias-variance trade-off

in nonparametric smoothing.

Overall, the performance of our estimator for parameters and functions is fairly robust as the

values of (ϱ, C) vary. The effect of changing tuning parameters diminishes as n rises. Given the large

sample size in our empirical application, these results provide support for our empirical findings,

which are expected to be relatively robust to varying the number of basis functions or bandwidths.

Appendix 1.4: Extension of SEM-SP

In Appendix 1.1, we propose SEM-SP and demonstrate a two-step estimation for parameters ω0 by

PNLS (A.6) and unknown functions {mj(·),m(1)
j (·)}3j=1 by kernel backfitting (A.8). Specifically,

recall that the determinants of under- (over-) investment probability are W u
it ∈ ℜqu (W e

it ∈ ℜqe),
and Wit = (W u

it ,W
e
it) ∈ ℜq, with q = qu + qe. With our notations ω0 = (µ0, γ0) with µ0 = (µu0 , µ

e
0)

and γ0 = (γu0 , γ
e
0), the PNLS estimates ω0 from a nonlinear parametric function π(W ;ω0) in (A.3)

as the difference between (scaled) under- and over-investment probabilities:

π(Wit;ω0) = µu0pu(Wit; γ0)− µe0pe(Wit; γ0), (A.11)

where the conditional under- and over-investment probabilities take the following parametric multi-

logit structure

pu(Wit; γ0) =
exp(Wu⊤

it γu0 )

1 + exp(Wu⊤
it γu0 ) + exp(W e⊤

it γe0)
, pe(Wit; γ0) =

exp(W e⊤
it γe0)

1 + exp(Wu⊤
it γu0 ) + exp(W e⊤

it γe0)
. (A.12)

In this setup, the conditional efficient investment probability is 1 − pu(Wit; γ0) − pe(Wit; γ0). The

estimates ω̂ is then used in the second step to perform kernel smoothing on efficient investment

function and their derivatives.

The consistency of the two-step estimation critically depends on correct functional form assump-

tions for 1) efficient investment functions (EIFs) and 2) multi-logit probability functions. Violating

either assumption leads to model misspecification in SEM-SP and therefore inconsistent estimates.

On one hand, the current SEM-SP excludes interactive effects among efficient investment vari-

ables (EIVs) Xl and Xs, for 1 ≤ l ̸= s ≤ p. While such interactions (e.g., between Tobin’s q

16



and sales) lack theoretical support in finance, omitting them in other applications can oversimplify

joint effects and bias the model estimation. On the other hands, the structure of pu(·) and pe(·)
may deviate from the assumed multi-logit form, such as exhibiting non-monotonic structure, which

yields inconsistent estimates of ω̂ as well as second-step estimates.

To mitigate misspecification issues arising from the two sources, we propose a robust version of

SEM-SP, denoted as SEM-SP-R, with two main modifications. First, the SEM-SP-R follows Wang

et al. (2024) to improve model flexibility of EIFs by adding interactions as

Iit = m0 + αi + ηt +
d∑
j=1

mj(Xj,it) +
∑∑
1≤j<l≤d

Hjl(Xj,it, Xl,it) + ϵit, (A.13)

where Hjl(·) is a bivariate unknown function that captures pair-wise interactive effects among X

beyond a simple multiplicative form. Second, the SEM-SP-R replaces the parametric conditional

probabilities in (A.12) with a general nonparametric form as pu(W
u
it) ∈ ℜqu and pe(W

e
it) ∈ ℜqe .

As a result, π(Wit; γ0) in (A.11) is generalized as an additive nonparametric function π(Wit) =

µu0pu(Wit) − µe0pe(Wit), where Wit = (W u
it ,W

e
it). Nonetheless, the structure of π(W ) is delicate

because µu0 (µe0) cannot be identified from the nonparametric pu(W
u), and pu(·) and pe(·) must

contain strictly separable W for their individual identification.

To facilitate our discussion on SEM-SP-R while preserving the model’s applicability, below we

focus on a simplified scenario in which firms may under-invest or over-invest, but never efficiently

invest. This case is simplified only from a modeling perspective because the previous three-regime

structure (allowing under-, over-, optimally-invest) is reduced to a two-regime structure (allowing

under- and over-investment), restricting the probability of making efficient investment (i.e., 1 −
pu(W ) − pe(W )) to be zero. However, this feature is very likely to hold in practice because firms

are almost always invest inefficiently due to frictions under imperfect financial markets (Jensen and

Meckling, 1976).

Under the two-regime structure, firms may under-invest with a conditional probability E(1(uit >

0, eit = 0)|Wit) = pu(Wit) ≥ 0 and over-investment with pe(Wit) = 1−pu(Wit). Thus, ϵit = vit−uit
with probability pu(Wit) and ϵit = vit + uit with probability 1− pu(Wit) in (A.13). Equivalently,

ϵit = vit − uit1(uit > 0, eit = 0) + eit[1− 1(uit > 0, eit = 0)]. (A.14)

Recall that E(uit|uit > 0, eit = 0,Wit) ≡ µu0 > 0 and E(eit|eit > 0, uit = 0,Wit) ≡ µe0 > 0 by our

assumption. Define µ̃u0 = µu0 + µe0 > 0, we have

E(ϵit|αi, ηt,Wit) = − [µu0pu(Wit)− µe0(1− pu(Wit))] = −[µ̃u0pu(Wit)− µe0] ≡ −π(Wit),

where π(·) a linear transformed function of pu(Wit) with a location shifter −µe0 and scaling factor
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µ̃u0 . The regression form of the SEM-SP-R is

Iit = m0 + αi + ηt +
d∑
j=1

mj(Xj,it) +
∑∑
1≤j<l≤d

Hjl(Xj,it, Xl,it)− π(Wit) + ϵ̃it, (A.15)

where ϵ̃it = ϵit+π(Wit). Compared to the regression form of SEM-SP in (A.4), SEM-SP-R replaces

parametric functions π(Wit;ω0) with its nonparametric version π(Wit), and further includes a total

of d(d − 1)/2 interaction functions Hjl(·). Define p∗u(Wit) = µ̃u0pu(Wit) as a scaled probability

function. Since ∆π(Wit) = [p∗u(Wit)− p∗u(Wit−1)] = ∆p∗u(Wit), we eliminate the fixed effects by

applying the first-difference on (A.15) to have

∆Iit = ∆D⊤
t,−1η0,−1 +

d∑
j=1

∆mj(Xj,it) +
∑∑
1≤j<l≤d

∆Hjl(Xj,it, Xl,it)−∆p∗u(Wit) + ∆ϵ̃it. (A.16)

Our estimation targets are {mj(·), Hjl(·)}d−1,d
j=1,j<l and p∗u(·). The main challenge in (A.16) is that

p∗u(W ) = µ̃u0pu(W ) ≥ 0 is non-negative, although it is not upper bounded by one as µ̃u0 > 0. To

impose its non-negativity, we assume p∗u(W ) take a flexible structure as follows

p∗u(W ) = µ̃u0pu(W ) = exp (ln(µ̃u0) + g(W )) ≥ 0, (A.17)

where g(W ) is a unbounded and auxiliary nonparametric function of W . Since the sign of p∗u(W )’s

derivative only depends on the sign of g(W )’s derivatives, our use of g(W ) can be useful to cap-

ture arbitrary nonlinear, particularly non-monotonic functional form of the unknown probability

function.

Estimating the model in (A.16) using assumption in (A.17) calls for proper identification con-

ditions. First, as in SEM-SP, we normalize fixed effects as
∑n

i=1 αi =
∑T

t=1 ηt = 0, implying

η0,1 = −
∑T

s=2 η0,s. Second, we “anchor” the EIFs in (A.16) by assuming that each function passes

through origin points as

mj(Xj = 0) = 0, ∀j = 1, . . . , d, Hjl(Xj = 0, Xl) = Hjl(Xj , Xl = 0) = 0, ∀1 ≤ j < l ≤ d. (A.18)

Last, the identification of p∗u(W ) is subtle. Notice first that ln(µ̃u0) cannot be separately identified

from g(W ) because ln(µ̃u0) + g(W ) is additive invariant, i.e., [µ̃u0 + c] + [g(W ) − c] ≡ µ̃u∗0 + g∗(W )

for any constant c. To identify g(W ) from p∗u(W ), we adopt the following identification condition

g(W1 = 0,W2, . . . ,Wd) = g(W1,W2 = 0, . . . ,Wd) = · · · = g(W1,W2, . . . ,Wq = 0) = 0. (A.19)

(A.19) implies that g(·) passes through origin point or has a zero intercept.

It should be clear that one cannot identify pu(W ) by g(W ), but only identify pu(W ) up to scale
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by p∗u(W ) through exp (ln(µ̃u0) + g(W )). Identifying p∗u(W ) is important to access under-investment

probability pu(W ). For instance, if we impose distributional assumption on u and e, say each follows

a standard half-normal distribution, we can identify pu(W ) = p∗u(W )/µ̃u0 , where µ̃
u
0 = 2

√
2/π. In

general without distributional assumptions, p∗u(W ) can be identified up to a constant because it

enters the model additively along with other additive EIFs. This does not create an issue if we are

interested in the percentage change of pu(Wit), which is invariant to arbitrary constant and scale

parameter µ̃u0 and can be easily obtained through (p∗u(Wit)− p∗u(Wit−1))/p
∗
u(Wit−1). Instead, if we

are interested in identifying p∗u(W ), we propose a similar zero-intercept identification condition as

in (A.19):

p∗u(W1 = 0,W2, . . . ,Wd) = p∗u(W1,W2 = 0, . . . ,Wd) = · · · = p∗u(W1,W2, . . . ,Wq = 0) = 0. (A.20)

Because p∗u(W ) is non-negative, this above condition implies that p∗u(W ) contains a zero intercept.

For instance, if q = 1, the assumed structure of p∗u(W ) in (A.17) and the identification conditions

(A.19)-(A.20) implies that p∗u(W ) = exp (ln(µ̃u0) + g(W ))−exp (ln(µ̃u0) + g(0)) = µ̃u0 [exp(g(W ))−1],

satisfying p∗u(0) = 0.

The improved flexibility of SEM-SP-R significantly alleviates model misspecification by allowing

for unknown interaction and probability functions. However, it comes with cost of the curse-of-

dimentionality, i.e., the local smoothing needs to be performed for two-dimensional Hjl(·) and q-

dimensional p∗u(·). Given moderately large sample size, Wang et al. (2024) show that the bivariate

smoothing works fairly well in a semiparametric SFM with only individual and interactive functions.

Different from them, our SEM-SP-R needs to account for an additional p∗u(W ), but a large q

would significantly downgrade the precision of estimation for p∗u(·). For this reason, we restrict the

dimension of W to be small in practice to alleviate the curse of dimensionality.

Below, we propose our nonparametric estimator for the SEM-SP-R in Appendix 1.4.1 and

demonstrate their finite-sample performance in Appendix 1.4.2.

Appendix 1.4.1

Focusing on the differenced regression of SEM-SP-R in (A.16), we estimate unknown functions

mj(·),Hjl(·), and p∗u(·) in two steps. In the first step, we approximate all unknown functions through

series estimator. Recall that Xj = [aj , bj ] ⊂ ℜ is a compact support of Xj for some finite constants

aj and bj . Without loss of generosity, we consider Xj = X for all j with aj = a = −1 and bj = b = 1.

Similarly, define W being a common compact support of Wj , for j = 1, . . . , q. To approximate each

individual function mj(xj), we adopt the basis function ϕκ(xj) = [ϕ1(xj), . . . , ϕκ(xj)]
⊤ and series

coefficients θj ∈ ℜκ to obtain mj(xj) ≈ ϕκ(xj)
⊤θj . So ∆mj(Xj,it) = mj(Xj,it) − mj(Xj,it−1) ≈

(ϕκ(Xj,it) − ϕκ(Xj,it−1))
⊤θj ≡ ∆ϕκ(Xj,it)

⊤θj , where ∆ϕκ(Xj,it) = [∆ϕ1(Xj,it), . . . ,∆ϕκ(Xl,it)]
⊤.

Thus,
∑d

j=1∆mj(Xj,it) ≈ ∆ϕm(Xit)
⊤θm, where ∆ϕm(Xit) = [∆ϕκ(X1,it)

⊤, . . . ,∆ϕκ(Xd,it)
⊤]⊤ and
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θm = [θ⊤1 , . . . , θ
⊤
d ]

⊤ ∈ ℜdκ. To approximate interaction functions, we have ∆Hjl(Xj,it, Xl,it) ≈
∆ϕκ1(Xj,it, Xl,it)

⊤θj,l, where for κ1 = κ2, θj,l ∈ ℜκ1 and ∆ϕκ1(Xj,it, Xl,it) = [∆ϕκ(Xj,it)
⊤ ⊗

∆ϕκ(Xl,it)
⊤]⊤ is the tensor product of two basis functions evaluated at different inputs. Thus,∑∑

1≤j<l≤d
∆Hjl(Xj,it, Xl,it) ≈ ∆ϕH(Xit)

⊤θH , where

∆ϕH(Xit) = [∆ϕκ1(X1,it, X2,it)
⊤, . . . ,∆ϕκ1(X1,it, Xd,it)

⊤, . . . ,∆ϕκ1(Xd−1,it, Xd,it)
⊤]⊤

is a (d(d − 1)κ1/2) × 1 vector and θH = [θ⊤1,2, . . . , θ
⊤
1,d, . . . , θ

⊤
d−1,d]

⊤. Finally, to approximate the

scaled probability function, we have p∗u(Wit) ≈ exp(ϕκ2(Wit)
⊤θp), where for κ2 = κq, θp ∈ ℜκ2

and ϕκ2(Wit) = [ϕκ(W1,it)
⊤ ⊗ ϕκ(W2,it)

⊤ ⊗ · · · ⊗ ϕκ(Wq,it)
⊤]⊤ is the tensor product of all basis

functions evaluated at W1,it, . . . ,Wq,it. Notice that the first element in each ϕκ(Ws,it)
⊤ is one in

order to approximate µ̃u0 . The rest elements in each ϕκ(Ws,it)
⊤ are empirically centered around

zero to impose the condition in (A.19). Notice also that, in the first step, there is no need to impose

level-restriction on p∗u(Wit) in (A.20) because constants will be wiped out by the first-differencing.

So, we approximate ∆p∗u(Wit) ≈ exp(ϕκ2(Wit)
⊤θp)− exp(ϕκ2(Wit−1)

⊤θp) = ∆exp(ϕκ2(Wit)
⊤θp).

For ∆Φ(Xit) = [∆D⊤
t,−1,∆ϕm(Xit)

⊤,∆ϕH(Xit)
⊤]⊤ and θf = [η⊤0,−1, θ

⊤
m, θ

⊤
H ]

⊤, we estimate

∆D⊤
t,−1η0,−1 +

∑d
j=1∆mj(Xj,it) +

∑∑
1≤j<l≤d

∆Hjl(Xj,it, Xl,it) ≈ Φ(Xit)
⊤θf . Hence, the entire dif-

ferenced model in (A.16) can be approximated as

∆Iit ≈ ∆Φ(Xit)
⊤θf −∆exp(ϕp(Wit)

⊤θp) + ∆ϵ̃it.

Different from θf , coefficients θp is not additively separable from basis functions. We propose to

estimate θ = [θ⊤f , θ
⊤
p ] through its nonlinear least square estimator θ̂ from

θ̂ = argmin
θ∈Θ

n∑
i=1

T∑
t=2

(
∆Iit −∆Φ(Xit)

⊤θf +∆exp(ϕp(Wit)
⊤θp)

)2
, (A.21)

where Θ ⊂ ℜS(κ) is a compact support, where S(κ) = T − 1 + dκ + d(d − 1)κ1/2 + κ2. The

estimator in (A.21) is constructed in a similar fashion as in Horowitz and Mammen (2004) for a

generalized additive model with known link function and cross-sectional data. The difference is

that we use panel data, consider a differenced additive model with interactions, and apply a known

(exponential) link function only to the non-negative probability function. Using θ̂, we obtain series

estimates for time fixed effects η̂t and functions estimates as

m̂j(xj) = ϕκ(xj)
⊤θ̂j , Ĥjl(xj , xl) = ϕκ1(xj , xl)

⊤θ̂j,l, p̂∗u(w) = exp(ϕκ2(w)⊤θ̂p).

In the second step, we propose a one-step kernel backfitting for functions mj(·), Hjl(·), and
p∗u(·), as well as their derivatives m

(1)
j (·), H(1)

jl (·), and p
∗(1)
u (·) to improve estimation efficiency.
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First, to backfit individual function mj(xj), based on (A.16) we consider the following regression

model

Î
(m)
it,−j = mj(Xj,it) + ϵ̃it,

where Î
(m)
it,−j = ∆Iit− η̂t+ m̂j(Xj,it−1)−

∑d
l=1,l ̸=j ∆m̂l(Xl,it)−

∑∑
1≤j<l≤d

∆Ĥjl(Xj,it, Xl,it)+∆p̂∗u(Wit)

is a constructed dependent variable, which collects all estimates from the first step except for

mj(Xj,it), for t = 2, . . . , T . As in SEM-SP, we obtain the backfitting local-linear estimator for

mj(xj) as m̃j(xj) ≡ ã0, and for m
(1)
j (xj) ≡ a1 as m̃

(1)
j (xj) ≡ ã1, from

(ã0, ã1) = argmin
{a0,a1}

n∑
i=1

T∑
t=2

[
Î
(m)
it,−j − a0 − (Xj,it − xj)a1

]2
K

(
Xj,it − xj

hj

)
. (A.22)

Second, to backfit interaction function Hjl(xj , xl), we consider the following regression model

Î
(H)
it,−jl = Hjl(Xj,it, Xl,it) + ϵ̃it,

where Î
(H)
it,−j = ∆Iit− η̂t+ Ĥjl(Xj,it−1, Xl,it−1)−

∑d
j=1∆m̂j(Xj,it)−

∑∑
1≤j′<l′≤d,
(j′,l′) ̸=(j,l)

∆Ĥj′l′(Xj′,it, Xl′,it) +

∆p̂∗u(Wit) collects all estimates from the first step except for Hjl(Xj,it, Xl,it). We obtain the

backfitting local-linear estimator for Hjl(xj , xl) as H̃jl(xj , xl) ≡ b̃0, and for H
(1)
jl (xj , xl) ≡ b⊤1

as m̃
(1)
j (xj) ≡ b̃⊤1 , from

(b̃0, b̃1) = argmin
{b0,b1}

n∑
i=1

T∑
t=2

[
Î
(H)
it,−jl − b0 − (Xjl,it − xjl)

⊤b1

]2
K

(
Xjl,it − xjl

hj

)
, (A.23)

where (Xjl,it − xjl) = [(Xj,it − xj), (Xl,it − xl)]
⊤ and K

(
Xjl,it−xjl

hj

)
= K

(
Xj,it−xj

hj

)
K

(
Xl,it−xl

hl

)
is

a bivariate product kernel function.

Finally, to backfit probability function p∗u(w), we consider the following regression model

Î
(p)
it = −p∗u(Wit) + ϵ̃it,

where Î
(p)
it = ∆Iit−η̂t−p̂∗u(Wit−1)−

∑d
j=1∆m̂j(Xj,it)−

∑∑
1≤j<l≤d

∆Ĥjl(Xj,it, Xl,it) collects all estimates

from the first step except for p∗u(Wit). Inspired by Ziegelmann (2002), we obtain the backfitting

exponential local-linear estimator for g(w) as g̃(w) ≡ c̃0, and for g(1)(w) as g̃(1)(w) ≡ c̃⊤1 , from

(c̃0, c̃1) = argmin
{c0,c1}

n∑
i=1

T∑
t=2

[
Î
(p)
it + exp

(
c0 + (Wit − w)⊤c1

)]2
K

(
Wit − w

hg

)
, (A.24)
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where (Wit − w) = [(W1,it − w), . . . , (Wq,it − w)]⊤ and K
(
Wit−w
hg

)
=

∏q
s=1K

(
Ws,it−wj

hg,s

)
is a

q-dimensional product kernel function. In practice when one needs to impose the identification

condition in (A.20), we propose to empirically center the estimates p̃∗u(w) = µ̃∗0 exp (g̃(w)) around

origin. For instance, if q = 1, we construct the certered version as p̃∗u(w)− p̃∗u(0).

Appendix 1.4.2

We proceed to investigate the finite-sample performance of our proposed two-step estimator for

SEM-SP-R in (A.13)-(A.14). We focus on the backfitting kernel estimator m̃j(xj) in (A.22),

H̃jl(xj , xl) in (A.23), and scaled probability function p̃∗u(w) in (A.24). We retain the previous

sample size by setting T = 15 and choose n = (100, 200, 400). To reduce computational burden, we

set d = 2 to generate data according (A.13)-(A.14) as:

Iit = m0 + αi + ηt +m1(X1,it) +m2(X2,it) +H12(X1,it, X2,it) + ϵit, (A.25)

where ϵit = vit − uit1(uit > 0, eit = 0) + eit[1 − 1(uit > 0, eit = 0)] follows a two-regime structure

such that ϵit = vit−uit with probability pu(Wit) and ϵit = vit+eit with probability 1−pu(Wit). We

consider a simple setup by choosing a univariate W , so q = 1. We specify two DGPs with the same

specifications on m1(X1) and m2(X2) as in (A.10), but consider different form of H12(X1, X2)

and p∗u(W ) = µ̃u0pu(W ). In DGP1, H12(v1, v2) = sin(1.5v1)v
2
2 and pu(v) = 3v2/π3. In DGP2,

H12(v) = 0.5v1v2 and pu(v) = sin(v)/2. For 0 ≤ W ≤ π, the probability function is designed to

increase with W in DGP1 but decreases with W in DGP2. Also, pu(W ) satisfies 0 ≤ pu(W ) ≤ 1

and
∫ π
0 pu(w)dw = 1.

We generate auxiliary variables {X0
j,it}2j=1 from a bivariate normal distributionN (µ0,Σ0), where

µ0 =

[
0

0

]
and Σ0 =

[
1 0.5

0.5 1

]
is the covariance matrix. We also generate W 0

it ∼ U(0, π). To

introduce dependence across time, we generate Xj,it = X0
j,it + ζxj,it (with j = 1, 2), and Wit =

W 0
it + ζwit , where ζxj,it = 0.25ζxj,it−1 + ξit and ζwit = 0.5ζwit−1 + ξit follow an AR(1) process with

ξit ∼ N (0, 0.252). Here, we generate Xj,it with values falling into [−2, 2] and Wit falling into [0, π]

We construct the firm fixed effect αi =
1
T

∑T
t=1 c0(X1,it+X2,it+Wit) + ξαi , where ξ

α
i ∼ N (0, 1)

and c0 = 1. Likewise, we generate time fixed effect as ηt =
1
n

∑n
i=1 c0(X1,it+X2,it+Wit)+ξ

η
t , where

ξηt ∼ N (0, 1) and c0 = 1. We empirically center (αi, ηt) to be consistent with our identification

condition. Finally, we employ a cubic B-spline series estimator in (A.21) with each knot evenly

spaced on the support of X1 and X2, and a 2nd-order Gaussian kernel function in (A.22)-(A.24).

As discussed in Appendix 1.4.1, we impose the identification condition for m1(·), m2(·), H12(·), g(·)
and p∗u(·) by empirically centering their series and kernel estimates around zero. All the turning

parameters are chosen following the guidance in Appendix 1.3 by setting ϱ = 0.1 and C = 1.

We perform 1, 000 repetitions throughout the experiment. We evaluate the performance of func-
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Table A1.4: SEM-SP-R Estimation Results with T = 15

µ̃u
0 = 1 µ̃u

0 = 3

Panel A DGP1 n = 100 200 400 n = 100 200 400

m̃1 RAMSE 0.0550 0.0420 0.0314 0.0609 0.0472 0.0357
ABIAS 0.0401 0.0310 0.0237 0.0446 0.0349 0.0267
ASD 0.0479 0.0377 0.0289 0.0538 0.0428 0.0328

m̃2 RAMSE 0.1162 0.0910 0.0704 0.1199 0.0940 0.0725
ABIAS 0.0938 0.0749 0.0583 0.0968 0.0764 0.0592
ASD 0.0504 0.0379 0.0281 0.0548 0.0435 0.0325

H̃12 RAMSE 0.3592 0.2354 0.1907 0.3600 0.2358 0.1907
ABIAS 0.2917 0.1868 0.1465 0.2925 0.1871 0.1466
ASD 0.0763 0.0509 0.0343 0.0829 0.0553 0.0363

p̃∗u RAMSE 0.0446 0.0329 0.0250 0.0578 0.0439 0.0319
ABIAS 0.0314 0.0238 0.0184 0.0407 0.0317 0.0234
ASD 0.0384 0.0294 0.0225 0.0424 0.0321 0.0242

µ̃u
0 = 1 µ̃u

0 = 3

Panel B DGP2 n=100 200 400 n=100 200 400

m̃1 RAMSE 0.0719 0.0557 0.0402 0.0820 0.0785 0.0518
ABIAS 0.0534 0.0419 0.0327 0.0577 0.0461 0.0372
ASD 0.0465 0.0369 0.0286 0.0603 0.0581 0.0487

m̃2 RAMSE 0.0650 0.0474 0.0346 0.0786 0.0648 0.0481
ABIAS 0.0459 0.0339 0.0252 0.0490 0.0391 0.0274
ASD 0.0484 0.0368 0.0275 0.0628 0.0547 0.0420

H̃12 RAMSE 0.3384 0.2568 0.2040 0.5052 0.4608 0.3204
ABIAS 0.2556 0.1938 0.1548 0.2844 0.2352 0.1674
ASD 0.2808 0.2154 0.1716 0.4494 0.4104 0.2808

p̃∗u RAMSE 0.2168 0.1332 0.0872 0.2950 0.1682 0.0864
ABIAS 0.1495 0.0886 0.0515 0.1824 0.1099 0.0665
ASD 0.1586 0.1025 0.0745 0.1521 0.1257 0.0756

tion estimates (m̃1(·), m̃2(·), H̃12(·), p̃∗u(·)) through the root averaged mean squared error (RAMSE),

the averaged absolute BIAS (ABIAS), and averaged standard deviation (ASD) across 50 grid points

in [0, 3.14].

Table A1.4 summarizes the estimation performance under DGP1 (upper panel) and DGP2

(lower panel). Each panel reports the results for two different scaling parameter, µ̃u0 = 1 and

µ̃u0 = 3, to access their impact on estimation, particularly on p̃∗u(·). The results for the two

individual functions are qualitatively similar to their early results in Table A1.2. The interaction

function estimates H̃jl(·) exhibit a worsen performance compared to the univariate estimates m̃j(·),
which aligns with the findings of Wang et al. (2024). This deterioration is expected due to the slower

convergence rate of bivariate smoothing. The scaled probability estimates perform nearly as well as

m̃1(·) under DGP1, but deteriorate under DGP2 in terms of larger bias and variance, particular for

the smaller sample size (n = 100). We observe no significant impact of µ̃u0 on the estimates under

DGP1. For instance, the RAMSE of H̃12(·) (0.1907) remains the same across different values of µ̃u0
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Figure A.3: SEM-SP-R Estimation from DGP1 for m1(x1), p
∗
u(w), and Percentage Change
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under n = 400. However, the impact is more pronounced under DGP2 by comparing the results

for H̃12(·) and p̃∗u(·). This suggests that the periodic function p∗u(·), when scratched out by µ̃u0 > 1,

may introduce additional challenges in model estimation. Nonetheless, as n gets large, all estimates

improve judged by decreasing RAMSE, ABIAS, and ASD across both DGPs, demonstrating their

consistency.

We further provide a vivid picture on the performance of our estimators in Figure A.3 for DGP1

and Figure A.4 for DGP2, using the largest sample size of (n, T ) = (400, 15). For brevity, each

figure presents estimates under µ̃u0 = 1 (first row) or µ̃u0 = 3 (second row), where the first column

plots m1(·), the second column plots p∗u(·), and the third column shows the percentage change in

pu(W1t), computed as (pu(W1t)−pu(W1t−1))/pu(W1t−1) using the first unit (i = 1) for t = 2, . . . , 15.

In both DGPs, our function estimates (dashed line) closely capture the nonlinear structure of the

true functions m1(x1) and p∗u(w) (solid line), regardless of the value of µ̃u0 . Additionally, the

estimated percentage change in p̃∗u(W1t) (dashed line with empty circles) is computed without

imposing the zero-intercept identification condition (A.20) on p∗u(W ). As expected, irrespective of

µ̃u0 , the estimated percentage change in pu(W1t) (dashed line with empty circles) closely follows the

true percentage change (solid line with solid circles), except at boundary points of w where larger
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Figure A.4: SEM-SP Estimation from DGP2 for m1(x1), p
∗
u(w), and Percentage Change
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deviations occur. This result aligns with our discussion in Appendix 1.4.1, reinforcing that the

identification condition for p∗u(W ) is not required when estimating the percentage change in pu(W )

over time.

Overall, our SEM-SP-R demonstrates its promising numerical performance in estimating un-

known individual and interaction EIFs, as well as probability scaled by a single parameter. It can

be served as a viable alternative in application where the interactive effects and nonparametric

probability function are deemed relevant.

Appendix 2: Nonparametric Tests for Function and Composite Er-

ror Structures

Section 3.4 of the paper outlines nonparametric tests (In and Jn) for correct specifications on

parametric efficiency functions under H01, two-regime composite error under H02, and three-regime

composite error under H03. Below, we provide detailed implementation procedures of In for H01

in Appendix 2.1, Jn for H02 in Appendix 2.2, and Jn for H03 in Appendix 2.3.
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Appendix 2.1: Testing for correct parametric efficiency functions

The efficiency functions {mj(·)}dj=1 under SEM-SP in (A.1) are nonparametrically specified to

capture possible unknown nonlinear effect of each Xj . Under a special case where Xj enters the

model linearly, SEM-SP reduces to SP-OLS (defined in Section 2.2) where eachmj(·) = Xjβj can be

parametrically specified for unknown parameter βj . Thus, a consistent test for correct parametric

functional form of mj(·) is important to improve estimation efficiency in our applied study. We

base our first null hypothesis as

H01 : Pr(mj(Xj) = Xjβj) = 1, almost surely,

where the parametric specification on each efficiency function is correct. Inspired by Lin et al.

(2014), we test H01 by a nonparametric test based on the integrated error of function difference

In =
∫
[mj(xj)− xjβj ]

2 dxj .

To construct a feasible version of In for testing the underlying structure ofmj(·), first notice from
(A.4) that I

(−j)
it = m0+αi+mj(Xj,it)+ ϵ̃it, where I

(−j)
it = Iit− ηt−

∑
l=1,l ̸=jml(Xj,it)+π(Wit;ω0)

is a psudo-response for Xj . Under H01, we observe that

I
(−j)
it = m0 + αi +Xjβj + ϵ̃it. (A.26)

Using our PNLS estimates ω̂, series estimates η̂, and kernel backfitting estimates m̃0 and m̃j(·), we
estimate I

(−j)
it by Ĩ

(−j)
it = Iit − m̃0 − η̂t −

∑
l=1,l ̸=j m̃l(Xj,it) + π(Wit; ω̂), and regress Ĩ

(−j)
it on Xj in

(A.26) to obtain conventional within estimator β̂j . Following the arguments in Lin et al. (2014),

we construct the feasible test statistic for In as

În =
1

n2hj

n∑
i=1

n∑
m=1̸=i

T∑
t=1

T∑
τ=1̸=t

K

(
Xj,it −Xj,mτ

hj

)
ˆ̃ϵcitˆ̃ϵ

c
mτ , (A.27)

where ˆ̃ϵcit =
ˆ̃ϵit − 1

T

∑T
t=1

ˆ̃ϵit is the within-difference residual from (A.26). We further follow Lin

et al. (2014) to employ a centered version of În as

Îcn =
n
√
hj În√
σ̂2n

, (A.28)

where

σ̂2n =
2

n2hj

n∑
i=1

n∑
m=1̸=i

T∑
t=1

T∑
τ=1̸=t

K2

(
Xj,it −Xj,mτ

hj

)
(ˆ̃ϵcit)

2(ˆ̃ϵcmτ )
2. (A.29)

Although Îcn is expected to be asympotically normal as n→ ∞ with fixed T , it is known that non-

parametric test suffers from finite sample size distortions due to its slower convergence speed. We
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Table A2.1: Testing Results of H01 for Correct Parametric Efficiency Functions

Function being tested α Empirical Size (δ = 0) Empirical Power (δ = 1)

n=100 200 400 n=100 200 400

H01 : m1(X1) = X1β1 0.01 0.005 0.007 0.013 1 1 1
0.05 0.041 0.046 0.053 1 1 1
0.1 0.082 0.093 0.104 1 1 1

H01 : m2(X2) = X2β2 0.01 0.005 0.008 0.009 1 1 1
0.05 0.041 0.045 0.052 1 1 1
0.1 0.084 0.095 0.103 1 1 1

H01 : m3(X3) = X3β3 0.01 0.003 0.004 0.007 1 1 1
0.05 0.033 0.040 0.045 1 1 1
0.1 0.085 0.092 0.098 1 1 1

follow Lin et al. (2014) to implement the following residual-based wild bootstrap testing procedure

to better approximate the distribution of Îcn given finite sample.

1) With the original sample Θ = {Iit, Xit,Wit}n,Ti=1,t=1, compute Îcn in (A.28). Obtain the residual

ˆ̃ϵcit =
ˆ̃ϵit − 1

T

∑T
t=1

ˆ̃ϵit, where ˆ̃ϵit = Ĩ
(−j)
it −Xj β̂j defined in (A.26).

2) With {ˆ̃ϵit}n,Ti=1,t=1, obtain wild-bootstrap residual {ϵ∗it}
n,T
i=1,t=1, where ϵ

∗
it = [(1 −

√
5)/2]ˆ̃ϵit with

probability P = (1 +
√
5)/2

√
5, and ϵ∗it = [(1 +

√
5)/2]ˆ̃ϵit with probability 1 − P . Construct

the bootstrap sample Θ∗ = {I∗it, Xit,Wit}n,Ti=1,t=1, where I
∗
it = Xj β̂j + ϵ∗it.

3) Compute Îc∗n similar as in 1), except replacing sample Θ with Θ∗.

4) Repeat step 2)-3) a large number (B) of times to obtain an empirical distribution from {Îc∗n,b}Bb=1.

We reject H01 if p∗n < α, where p∗n = 1
B

∑B
b=1 1(Î

c∗
n,b > Îcn) is the empirical p-value and α is

the significant level.

We investigate the finite sample performance of Îcn in terms of its empirical size and power. We

adopt a similar DGP1 as in Appendix 1.3, except that m1(v) = v + δ 12v
2, m2(v) = v2 − δ 12v

3, and

m3(v) = v + δ1.5v4 for a parameter δ ≥ 0. Thus, H01 is imposed with δ = 0 and any deviation

from H01 is indicated by δ ̸= 0. In our simulation study below, we investigate the size by setting

δ = 0 and power by δ = 1. All other specifications under DGP1 are maintained. We adopt a

rule of thumb (ROT) bandwidth hj to implement Îcn and Îc∗n from hj = Chj σ̂jn
− 1

6 , where σ̂j is

the empirical standard deviation of {Xj,it}n,Ti=1,t=1, and Chj = 1 is used in our simulation for all

j = 1, 2, 3. We fix T = 15, choose n = (100, 200, 400), and obtain empirical size or power as the

average of rejection frequency from 1000 repetitions, and from each repetition we set B = 399 to

obtain bootstrap distribution under H01.

Table A2.1 shows the testing results of Îcn. The empirical size (left panel) and power (right

panel) are obtained for significant levels α = (0.01, 0.05, 0.1), and reported beneath each sample
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size n. We observe that the size of Îcn is underestimated when n = 100 or 200, but approaches

steadily to its corresponding nominal level as n reaches 400. The empirical powers of Îcn are all

unities across different sample size, thus indicating that the test is consistent. The results overall

reveal reasonable performance of our proposed test for H01, which can be expected to provide valid

testing results in our application given our large panel dataset.

Appendix 2.2: Testing for correct two-regime composite error

The composite error from SEM-SP in (A.2) assumes possible existence of under-investment (u)

and over-investment (e) under imperfect capital markets. Under SFM in the context of investment

efficiency analysis, only under-investment is assumed to exist as a result of financial constraints.

If so, SFM is more suitable in our application because agency problem do not constitute firm’s

inefficient investment. We base our second null hypothesis as

H02 : Pr(e = 0) = 1, almost surely,

where over-investment does not exist as assumed under SFM. The alternative is that either under-

investment or over-investment may appear with probabilities, as assumed under SEM-SP. We test

H02 by constructing a F-type test statistic as Jn = (SSR0−SSR1)
SSR1

, where SSR0 (SSR1) stands for the

sum of squared within-differenced residuals under restricted (unrestricted) SEM-SP. The restricted

SEM-SP imposes H02 by assuming a two-regime composite error ϵit = vit − uit1(uit > 0, eit = 0),

from which firms may under-invest with probability pu(W
u
it ; γ

u
0 ) or efficiently invest with probability

1 − pu(W
u
it ; γ

u
0 ). In this case, the inefficiency function is restricted as π0(W ;ω0) = µ0pu(W

u
it ; γ

u
0 ),

with ω0 = (µ0, γ
u
0 ). The unrestricted SEM-SP has the three-regime composite error in (A.2), which

properly nests the restrictive SEM-SP under H02.

To construct the feasible version of Jn, we first compute residuals under restricted SEM-SP as

ˆ̃ϵ0it = Iit − η̂t −
∑d

j=1 m̃j(Xj,it) + π0(Wit; ω̂), where all estimates above are obtained similarly as

discussed in Appendix 1.1, except that µe0 and γe0 are not estimated. We next compute residuals

under unrestricted SEM-SP as ˆ̃ϵit = Iit−η̂t−
∑d

j=1 m̃j(Xj,it)+π(Wit; ω̂). Define the within-difference

residuals ˆ̃ϵ0,cit = ˆ̃ϵ0it − 1
T

∑T
t=1

ˆ̃ϵ0it under H02 and ˆ̃ϵcit =
ˆ̃ϵit − 1

T

∑T
t=1

ˆ̃ϵit under the alternative. The

feasible test statistic of Jn can be obtained as

Ĵn =
(ŜSR0 − ŜSR1)

ŜSR1

, (A.30)

where ŜSR0 =
1
nT

∑n
i=1

∑T
t=1

ˆ̃ϵ0,cit and ŜSR1 =
1
nT

∑n
i=1

∑T
t=1

ˆ̃ϵcit are obtained under restricted and

unrestricted SEM-SP, respectively.

As in our test Îcn above, we obtain a more accurate finite sample distribution of Ĵn under H02

through the following bootstrap procedure.
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1) With the original sample Θ = {Iit, Xit,Wit}n,Ti=1,t=1, compute Ĵn in (A.30). Obtain the restricted

residuals ˆ̃ϵ0,cit = ˆ̃ϵ0it − 1
T

∑T
t=1

ˆ̃ϵ0it, and unrestricted residuals ˆ̃ϵcit =
ˆ̃ϵit − 1

T

∑T
t=1

ˆ̃ϵit, where ˆ̃ϵ0it
and ˆ̃ϵit are constructed as in (A.30).

2) With {ˆ̃ϵ0it}
n,T
i=1,t=1, obtain wild-bootstrap residual {ϵ∗it}

n,T
i=1,t=1, where ϵ

∗
it = [(1 −

√
5)/2]ˆ̃ϵ0it with

probability P = (1+
√
5)/2

√
5, and ϵ∗it = [(1+

√
5)/2]ˆ̃ϵ0it with probability 1−P . Construct the

bootstrap sample Θ∗ = {I∗it, Xit,Wit}n,Ti=1,t=1, where I
∗
it = η̂t+

∑d
j=1 m̃j(Xj,it)−π0(Wit; ω̂)+ϵ

∗
it

uses all estimates from restricted SEM-SP.

3) Compute Ĵ∗
n similar as in 1), except replacing sample Θ with Θ∗.

4) Repeat step 2)-3) a large number (B) of times to obtain an empirical distribution from {Ĵ∗
n,b}Bb=1.

We reject H02 if p∗n < α, where p∗n = 1
B

∑B
b=1 1(Ĵ

∗
n,b > Ĵn) is the empirical p-value and α is

the significant level.

We investigate the finite sample size and power of Ĵn. We adopt a similar DGP1 as in Appendix

1.3, except that the composite error is modified as ϵit = vit − uit1(uit > 0, eit = 0) + δeit1(uit =

0, eit > 0). Thus, H02 is imposed with δ = 0 and any departure from H02 is indicated by δ ̸= 0. In

our simulation study below, we investigate the size by setting δ = 0 and power by δ = 1. All other

specifications under DGP1 are maintained. We adopt a ROT hj to implement Ĵn and Ĵ∗
n. We fix

T = 15, choose n = (100, 200, 400), and use B = 399 bootstrap repetitions to approximate null

distribution under H02. For the sake of computational cost, we perform 500 repetitions to obtain

the average of rejection frequency for empirical size or power.

Table A2.2 shows the testing results of Ĵn for H02. The empirical size (left panel) and power

(right panel) are obtained for significant levels α = (0.01, 0.05, 0.1), and reported beneath each

sample size of n. Different from the qualitative results for H01 in Appendix 2.1, Ĵn under H02 is

typically oversized conditioning on each sample size. Nonetheless, the size steadily reduces toward

nominal levels as n doubles. When H02 is not true, the empirical power of Ĵn is relatively low

with a small sample size of n = 100 under α = 0.01. As n increases, however, the power converges

uniformly to unity under all significance levels, suggesting that Ĵn is consistent. Overall, we observe

a promising finite sample performance of our proposed test Ĵn for H02, which is expected to perform

well given our large panel dataset in the empirical study.

Appendix 2.3: Testing for correct three-regime composite error

Our three-regime composite error under SEM-SP captures three possible scenarios of under-investment,

over-investment, and efficient investment, each of which occurs with certain probability influenced

by corresponding financial variables. This is contradictory to the one-regime composite error under

SFM-TT by Lian and Chung (2008) or Lin et al. (2017), assuming an infeasible scenario where

firms exhibit both under-investment and over-investment at the same time. As discussed in Section
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Table A2.2: Testing Results for Correct Two-Regime Composite Error under H02

Empirical Size (δ = 0) Empirical Power (δ = 1)

α n=100 200 400 n=100 200 400

0.01 0.028 0.022 0.016 0.826 0.928 1
0.05 0.068 0.058 0.052 0.912 1 1
0.1 0.186 0.122 0.106 1 1 1

2.1, the infeasible scenario arises because, under SFM-TT, the composite error ϵ = v−u+e models

each side of investment inefficiency through continuous variables u and e. In this case, the proba-

bility of observing u = 0 (only over-investment occurs) or observing e = 0 (only under-investment

occurs) is zero. Due to this reason, it may not be applicable to apply the conventional SFM-TT by

Kumbhakar and Parmeter (2009) for investment efficiency analysis. It is therefore of our interest

to statistically justify our arguments about the potential problem of SFM-TT through hypothesis

testing.

A direct comparison between SEM-SP and SFM-TT, however, is not feasible because the former

does not nest the latter as a special case in terms of the composite error structure. The reason is that

both under-investment and over-investment appear concurrently with probability zero under SEM-

SP but with probability one under SFM-TT. Inspired by this observation, we provide statistical

justification on the validity of our three-regime structure by testing whether u and e would jointly

appear with non-zero probability. Formally, we base our third null hypothesis as

H03 : Pr(1(u > 0, e > 0) = 0) = 1, almost surely,

under which firms do not under-invest and over-invest simultaneously, as assumed by SEM-SP. We

construct our alternative model as a revised SEM-SP with a four-regime composite error

ϵ = v − u1(u > 0, e = 0) + e1(u = 0, e > 0)− (u− e)1(u > 0, e > 0). (A.31)

Different from the three-regime structure in (A.2), the four-regime composite error in (A.31) speci-

fies ϵ = v−u for under-investment with probability pu(W
u; γu0 ); ϵ = v+ e for over-investment with

probability pe(W
e; γe0); ϵ = v − u + e for simultaneous occurrence of under and over-investment

with probability ps(W ; γs0); and ϵ = v for efficient investment with probability 1 − pu(W
u; γu0 ) −

pe(W
e; γe0) − ps(W ; γs0). Here, we assume that the probability for both u > 0 and e > 0 to occur

(i.e., ps(·)) is influenced by determinants of both financial constraints (W u) and agency problem

(W e); thus, the determinants of ps(·) are W = (W u,W e) with associated coefficients γs0 ∈ ℜqu+qe .
Therefore, the rejection of H03 provides supporting evidence on the validity of SFM-TT, where

firms may possibly exhibit under-investment and over-investment at the same time with non-zero

probability.
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We follow a similar testing procedure as in Appendix 2.2 to test H03 by Ĵn in (A.30), except

that the restricted and unrestricted SEM-SP are modified as follows. The restricted SEM-SP

now refers to (A.1) with a three-regime composite error in (A.2). Thus, the inefficiency mean

function π0(W ;ω0) remains unchanged as in (A.3). The unrestricted SEM-SP contains a four-

regime composite error in (A.31), with its corresponding inefficiency mean function defined as

π(Wit;ω0) ≡ −E(ϵit|αi, ηt, Xit,Wit) =
[
µu0pu(W

u
it ; γ

u
0 )− µe0pe(W

e
it; γ

e
0)− µ0sps(Wit; γ

s
0)
]
, (A.32)

where µs0 = µu0 − µe0 is the difference between the mean inefficiency driven by financial constraints

or agency problem. For identification of the unrestricted SEM-SP, we assume that µs ̸= 0. Clearly,

our SEM-SP with three-regime under H03 is properly nested by SEM-SP with four-regime as a

special case. The test statistic Ĵn can be then constructed by computing ŜSR0 and ŜSR1 with

the within-difference residuals ˆ̃ϵ0,cit from restricted (three-regime) SEM-SP and ˆ̃ϵcit from unrestricted

(four-regime) SEM-SP, respectively. We propose the following bootstrap procedure to refine the

finite sample distribution of Ĵn under H03.

1) With the original sample Θ = {Iit, Xit,Wit}n,Ti=1,t=1, compute Ĵn in (A.30). Obtain the within-

difference residuals ˆ̃ϵ0,cit = ˆ̃ϵ0it− 1
T

∑T
t=1

ˆ̃ϵ0it from restricted (three-regime) SEM-SP with π0(Wit; ω̂)

defined in (A.3), and within-difference residuals ˆ̃ϵcit =
ˆ̃ϵit− 1

T

∑T
t=1

ˆ̃ϵit from unrestricted (four-

regime) SEM-SP with π(Wit; ω̂) defined in (A.32).

2) With {ˆ̃ϵ0it}
n,T
i=1,t=1 under restricted (three-regime) SEM-SP in (A.1), obtain wild-bootstrap resid-

ual {ϵ∗it}
n,T
i=1,t=1, where ϵ

∗
it = [(1−

√
5)/2]ˆ̃ϵ0it with probability P = (1+

√
5)/2

√
5, and ϵ∗it = [(1+√

5)/2]ˆ̃ϵ0it with probability 1−P . Construct the bootstrap sample Θ∗ = {I∗it, Xit,Wit}n,Ti=1,t=1,

where I∗it = η̂t +
∑d

j=1 m̃j(Xj,it) − π0(Wit; ω̂) + ϵ∗it uses all estimates from restricted (three-

regime) SEM-SP.

3) Compute Ĵ∗
n similar as in 1), except replacing sample Θ with Θ∗.

4) Repeat step 2)-3) a large number (B) of times to obtain an empirical distribution from {Ĵ∗
n,b}Bb=1.

We reject H02 if p∗n < α, where p∗n = 1
B

∑B
b=1 1(Ĵ

∗
n,b > Ĵn) is the empirical p-value and α is

the significant level.

We proceed by investigating the finite sample size and power of Ĵn under H03. We adopt a

similarDGP1 as in Appendix 1.3, except that the composite error is modified as ϵit = vit−uit1(uit >
0, eit = 0) + eit1(uit = 0, eit > 0)− δ(uit − eit)1(uit > 0, eit > 0). Thus, H03 is imposed with δ = 0

and any violation of H03 is indicated by δ ̸= 0. As in our previous cases, we investigate the size

by setting δ = 0 and power by δ = 1 in our simulation study below. All other specifications under

DGP1 are maintained. We adopt ROT bandwidth hj to implement Ĵn and Ĵ∗
n. We fix T = 15,

choose n = (100, 200, 400), and set B = 399 to obtain bootstrap distribution under H03. We again

perform 500 repetitions to compute the average of rejection frequency for empirical size or power.
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Table A2.3: Testing Results for Correct Three-Regime Composite Error under H03

Empirical Size (δ = 0) Empirical Power (δ = 1)

α n=100 200 400 n=100 200 400

0.01 0.020 0.012 0.008 0.812 0.986 1
0.05 0.078 0.066 0.056 0.912 1 1
0.1 0.190 0.132 0.118 0.998 1 1

Table A2.3 shows the testing results of Ĵn for H03. We observe a qualitatively similar results

compared to those for H02 above. The test Ĵn is oversized given small sample sizes of n = 100 or

200, but discloses reasonable size as n rises to 400. The test also reveals a non-trivial power upon

the violation of H03, albeit with relatively low magnitude when n = 100. As n doubles, the power

clearly converges to unity under all three significance levels, suggesting its consistency property.

Overall, the performance of our test Ĵn for H03 is suggested to be fairly reasonable for our applied

study.
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Appendix 3: Descriptive Data Summary

Table A3.1: Data Descriptive Summary Statistics

Classification Description Notation Mean SD Min Max

Dependent- Log of investment over- I -2.087 1.415 -12.107 7.763
variable one-year-lagged fixed assets

Variables in efficient- Log of firm’s current sale value over- CS 1.222 1.218 -2.657 8.346
investment function one-year-lagged fixed assets
(X) (ln(Saleit/Kit−1))

Log of firm’s last year sale value over- PS 1.200 1.209 -2.657 8.346
Log of one-year-lagged Tobin’s q PQ 0.470 0.455 -0.203 2.872

Variables in- Firm’s total debt over- Debt 0.484 0.185 0.028 0.937
under/over-investment- firm’s total assets
probability function Firm’s total net income plus- CF 1.111 8.340 -38.525 435.565
(Wu/W e) depreciation, divided by

one-year-lagged fixed assets

Variables in- Log of firm’s total assets Size 2.336 1.187 -0.850 6.837
over-investment- Firm’s age, the difference Age 15.515 5.588 2 31
probability function between firm’s current year
(W e) and establishment year

Board independence, or number of BI 0.367 0.052 0.25 0.6
independent directors out of
total number of directors

Duality, one if the CEO is also Duality 0.127 0.333 0 1
the Chairperson of the board,
and zero otherwise

Note: The table reports the summary statistics of dependent variables I, efficient investment variables X = (CS, PS, PQ),
determinants of under-investment probability Wu = (Debt, CF ), and determinants of over-investment probability W e =
(Debt, CF, Size,Age,BI,Duality). The total number of incumbent firms during 2006-2020 is 851. Source: CSMAR dataset
2006-2020.
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Appendix 4: Further Empirical Comparison Results from Section 4.3

Figure A.5: Model Comparison of EIFs between SEM-SP and SFM-SP, and SFM-NP

0.0 0.5 1.0 1.5

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

(a)

Log of one−year−lagged Tobin’s Q (PQ)

E
s
ti
m

a
te

d
 f
u
n
c
ti
o
n
 o

f 
m

1
(P

Q
)

SEM−SP (filled)
SFM−SP
SFM−NP

−1 0 1 2 3 4 5

−
2

0
2

4
6

(b)

Log of one−year−lagged sales ratio (CS)

E
s
ti
m

a
te

d
 f
u
n
c
ti
o
n
 o

f 
m

2
(C

S
)

SEM−SP (filled)
SFM−SP
SFM−NP

−1 0 1 2 3 4

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2

(c)

Log of two−year−lagged sales ratio (PS)

E
s
ti
m

a
te

d
 f
u
n
c
ti
o
n
 o

f 
m

3
(P

S
)

SEM−SP (filled)
SFM−SP
SFM−NP

In Section 4.3 of the paper, we compare the empirical results of our proposed SEM-SP model

with two benchmark non/semiparametric models: the SFM-SP model by Wang et al. (2024) and

the SFM-NP model by Simar et al. (2017), both of which assume under-investment only. This

appendix presents the additional empirical results that complement those in Section 4.3.

Figure A.5 presents the estimated efficient investment functions (EIFs) from the three models:

SEM-SP (gray-filled solid line), SFM-SP (dotted line with △), and SFM-NP (dash-dot line with ⋄).
Recall that standardized cash flow (CF ) is used to ensure the comparability and implementability of

all models. In each panel, the SFM-NP estimates are plotted as partial functions, holding all other

covariates at their median. For ease of comparison, each estimated function is empirically centered

around zero. Panel A of Table A4.1 reports the numerical derivative estimates of m̃
(1)
1 (PQ),

m̃
(1)
2 (CS), and m̃

(1)
3 (PS) from each model, evaluated at five selected percentiles: 0.10, 0.25, 0.50,

0.75, and 0.90. The final row of Panel A summarizes the mean derivative estimates across these

percentiles.

Figure A.5(a) is identical to Figure 1(a) in the paper, which reveals a non-monotonic rela-

tionship between Tobin’s q and investment across all three models, albeit with different degrees of

nonlinearity in m̃1(PQ). Compared to SEM-SP, both SFM-SP and SFM-NP display lower absolute

magnitudes in the estimated m1(PQ), a steeper decline with respect to PQ, and vary less with PQ.

Consequently, the mean marginal effect of PQ (i.e., m̃(1)(PQ)) declines significantly, from 0.1942

under SEM-SP to 0.0933 under SFM-NP, and further to -0.0212 under SFM-SP. Figure A.5(b)

presents the estimates of m2(CS). All models suggest that higher sales levels are associated with
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increased investment. Both SEM-SP and SFM-SP indicate a positive, mildly concave relationship,

with similar mean partial effects of m̃
(1)
2 (CS) at 1.2862 and 1.3781, respectively. In contrast, SFM-

NP produces a flatter curve with a substantially smaller mean partial effect of 0.4434. A similar

pattern is observed in Figure A.5(c) for m̃3(PS). SEM-SP and SFM-SP yield similar shapes, with

mean marginal effects of 0.0425 and 0.0374, respectively. In contrast, SFM-NP exhibits greater

fluctuations and a negative mean effect of -0.2141 (holding other variables constant). Notably,

since SFM-NP requires estimation of a nine-dimensional unknown function, the curse of dimen-

sionality greatly inflates the standard errors, rendering the effects of PQ, CS, and PS statistically

insignificant - contradicting well-established investment theories in finance.

Panel B of Table A4.1 reports the estimated coefficients by SEM-SP and SFM-SP in inefficient

probability functions pu(W ; γu0 ) and pe(W ; γe0). As discussed in Section 4.3 of the paper, SFM-SP is

limited by its inability to account for over-investment. As a consequence, the coefficient estimates

under SFM-SP are either largely reduced (i.e., CF and Age), changed with sign (i.e., Debt, Size,

and BI), or loss significance (i.e., Duality). Notably, the estimated constant µ̂u under SFM-SP

(6.54), which measures the expectation of under-investment given W (i.e., µu = E(u|W,u > 0, e =

0)), is about five times larger than that under our SEM-SP (1.3) which accounts for the presence

of over-investment. This indicates that SFM-SP overestimate under-investment. This can be seen

clearly from Panel C of Table A4.1, which reports that the expected k-fold decrease in investment

due to financial constraints (EFD-F) under SFM-SP (1.8173) is more than 1.5 times greater than its

counterpart under SEM-SP (0.6582). Similar observation regarding overstated under-investment is

made on SFM-NP, which yields a notably larger median of under-investment at 6.1.

Panel B of Table A4.1 reports the estimated coefficients from the inefficient probability func-

tions, pu(W ; γu0) and pe(W ; γe0), under SEM-SP and SFM-SP. As discussed in Section 4.3, SFM-SP

is limited by its inability to account for over-investment. As a result, its coefficient estimates are

either reduced in absolute value (e.g., CF and Age), exhibit sign change (e.g., Debt, Size, and

BI), or lose statistical significance (e.g., Duality). Notably, the estimated constant µ̂u under SFM-

SP is 6.54, which represents the expected under-investment conditional on W and the absence of

over-investment (i.e., µu = E(u|W,u > 0, e = 0)). This value is more than five times larger than

the corresponding estimate under our SEM-SP (1.3), which explicitly models over-investment. The

result suggests that SFM-SP significantly overestimates the degree of under-investment. This over-

estimation is reflected in Panel C of Table A4.1, which shows that the expected k-fold decrease

in investment due to financial constraints (EFD-F) under SFM-SP is 1.8173, more than 1.5 times

higher than the corresponding value of 0.6582 under SEM-SP. A similar pattern is also observed

for SFM-NP, which yields a notably inflated median level of under-investment at 6.1.

Overall, these results highlight the advantages of our SEM-SP model: it disentangles under-

investment from over-investment. The semiparametric EIF specification provides a flexible yet

tractable structure, alleviating the curse of dimensionality and is useful in empirical applications.
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Appendix 5: Instructions for Data and Code

This section provides instructions for accessing the data and code used in the empirical analysis. The

data (labeled Data) are sourced from the China Stock Market and Accounting Research (CSMAR)

database. The code (labeled Package Download) is implemented in user-friendly R packages. Both

can be downloaded from https://694160821.wixsite.com/taining by selecting R Code from the top

menu.

The “Package Download” contains two R files: Source code.R and Replication file.R. The Source

code.R includes all predefined functions that are needed for estimation. In particular, function [10.1]

WWYK.SIF performs the two-step estimation for our proposed SEM-SP model (see Section 3 of the

paper). Function [10.2] result.WWYK.SIF collects and summarizes the results from WWYK.SIF

into numerical tables and figures. Both functions are designed for ease of use—simply provide the

dataset: press <Enter> and the results will be generated. Detailed descriptions for each command

are given above the corresponding function. Replication file.R contains the code to reproduce the

tables and figures of the main empirical results. To use it, simply upload the source code and

dataset (CSMAR-Sample.xlsx) then run each line sequentially. If the users encounter any issues in

implementing the code for this or other applications, please contact the first author of this paper.

Please notice that our sample is derived from a subscription-based commercial database CS-

MAR. The sample is made available here solely for the purposes of replicating the results reported

in the paper and demonstrating the use of the accompanying codes. Without a valid subscription or

authorized access to the original database, this dataset may not be used for other research projects

or redistributed in any form.
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